GFD-E.176 Mathijs den Burger, VU
SAGA-WG Manuel Franceschini, VU
Malcolm Illingworth, EPCC

Ceriel Jacobs, VU

Shantenu Jha, LSU

Hartmut Kaiser, LSU

Thilo Kielmann, VU

Andre Merzky!, LSU

Rob van Nieuwpoort, VU

Sylvain Reynaud, IN2P3

Ole Weidner, LSU

Version: 1.0 February 7, 2011

Experiences with Implementing the SAGA Core API

Status of This Document

This document provides information to the grid community, documenting im-
plementation experiences for the ’Simple API For Grid Applications’ (SAGA)
as specified in GFD.90 [5]. It is supposed to inform implementors, and to sup-
port the process of defining SAGA language bindings. Distribution is unlimited.

Copyright Notice

Copyright © Open Grid Forum (2009, 2010). All Rights Reserved.

Abstract

The SAGA Core API (or short, SAGA API) has been implemented by a vari-
ety of groups, in different languages. As the SAGA API specification itself is
language neutral (it specifies the APT in SIDL), it is difficult to define interop-
erability between these implementations, in the conventional sense. That is left
to later experience reports addressing specific language bindings.

This report rather will show that (a) the SAGA API can be mapped to various
programming languages, without losing any functionality, and (b) that these im-
plementations can provide the required semantics for a wide variety of grid (and
non-grid) backends. We consider those properties as necessary and sufficient to
promote the proposed SAGA API specification (P-REC) to full recommendation
status (REC).

Leditor

GFD-E.176 February 7, 2011
Contents
1__Introduction | 4
1.1 Purpose of this Document| 4
I1.2__Notational Conventionsl 4
1.3 Interoperability Metrics| 4
.4 Structure of this Document! 6
2 Implementation Experiences | 7
2.1 Implementation Properties|. 7
B2 CHE] . . . 9
2.3 SAGA-CHH. 10
A Taval. . . o oo 14
BE_DESHLI oo e e e 15
R.6 JavaSAGAT 17
7 ISAGAT . . o o 25
8 Python| 30
2.9 Pythonover C++ 1. 31
2.10 Python over Java | 33
13__Conclusions | 38
4 Intellectual Property Issues 39
41 Contributors]o 39
4.2 Intellectual Property Statement|. 40
E3 Disclaimer] v oo o 40
4.4 Full Copyright Notice| 40
saga-core-wglogf .org 2

GFD-E.176

February 7, 2011

IA_Errata Discussion | 42

IA.1 Detailed discussion of amended exception ordering| 47
[References| 52
saga-core-wgQogf.org 3

GFD-E.176 Introduction February 7, 2011

1 Introduction

1.1 Purpose of this Document

The purpose of this experimental document is to document the experience gath-
ered while implementing GFD.90 [5], the proposed recommendation for a ’Sim-
ple API for Grid Applications’. In particular, these experiences are to prove
that interoperable implementations of the SAGA Core API specification are
available.

1.2 Notational Conventions

In structure, notation and conventions, this document follows those of the SAGA
Core API specification [5], unless noted otherwise. This document refers to [5]
as 'SAGA Core Specification’, 'SAGA Specification’, or simply ’specification’.
It further refers to the specification with applied errata (see appendix as
"Revised Specification’ or simply 'Revision’.

1.3 Interoperability Metrics

The OGF document process in GFD.1 [3] says:

”Once a document is published as a GFD-R-P, a 24-month timer will
begin during which period it is expected that operational erperience
will be gained will mean [sic] that at least two interoperable imple-
mentations (from different code bases and, in the case of licensed
code, from two separate license agreements) must be demonstrated
(if appropriate). The entire protocol or specification must be imple-
mented in the interoperable implementations. The GEFSG will deter-
mine whether interoperable implementations (or implementations in
software at all) are necessary or whether operational experience can
be gained in a more appropriate fashion.”

GFD.1 is, however, silent about the means to be applied while proving interop-
erability for the documented implementations. While interoperability is rather
well defined for protocols and service interfaces, it is less stringently defined for
APIs. Further, as SAGA is a language independent API specification, it is not
immediately obvious how interoperability can be demonstrated for implemen-
tations in different renderings, i.e. in different programming languages.

saga-core-wglogf .org 4

GFD-E.176 Introduction February 7, 2011

We thus define interoperability below as it is applied in the remainder of the
document. This definition focuses on two main aspects: implementability (lan-
guage independent), and implementation-interoperability (language depended).

Implementability of GFD.90

GFD.90 is considered to be implementable, iff

A-1: multiple diverse language bindings can be defined which are able to ex-
press the complete semantic and syntactic scope of the SAGA Core API,
while not compromising SAGA’s major design goals, as outlined in GFD.90,
in section 2; and

A-2: implementations of these language bindings exist, which cover the com-
plete scope of GFD.90.

Note that this point does not imply that a specific implementation is able to
switch between different language bindings on compile, link or runtime, but
rather that semantically identical applications can be implemented in the various
language bindings.

At the point of writing of this document, 3 different language bindings exist
(C++, Java, Python), for which multiple implementations exist which cover
the complete SAGA API scope. Although those language bindings are not yet
standardised, they prove that bindings are possible and functional.

Interoperability of GFD.90 Implementations

GFD.90 implementations in one specific language binding are considered inter-
operable, iff

B-1: these implementations can interchangeably be used to execute the seman-
tically same set of grid operations.

A stronger version of this requirement could be phrased as

C-1: GFD.90 implementations in a single language are considered interoperable
if they use the same set of language-native API deﬁnitionsﬂ

This paper documents C-1 for some languages (Java and Python), which thus
immediately proves B-1 for those languages. Note that it is, however, not the

Lsuch as interface classes for Java, header files for C and C++, and abstract classes for
Python

saga-core-wglogf .org)

GFD-E.176 Introduction February 7, 2011

purpose of this document to define, or even document, GFD.90 language bind-
ings (although it will show and discuss various features of these language bind-
ings for illustrative purposes).

It is very important to understand that this document, and indeed the SAGA
APT specification, is silent about protocol-level interoperability, and adaptor-
level interoperability (see Section : as important as those aspects are, they
are out of scope for the present discussion, and in fact out of scope for SAGA
as an API specification.

1.3.1 Goals of this Document

In accordance with the implementability and interoperability metrics defined
above, this text documents

D-1: the existence of semantically complete language bindings in C++, Java
and Python,

D-2: the API-level interoperability of two implementations of the Java language
bindings (which use the same Java interface classes), and of two imple-
mentations of the Python language bindings (which use the same python
classes to interface to different implementations).

We consider those experiences sufficient to document the implementability of
GFD.90.

Note that we do not attempt to present API compliance tests: we consider those
to be useful and required for specific language bindings of the SAGA API — they
seem, however, neither appropriate nor applicable to a language independent
API specification. The various implementation usually do implement extensive
unit tests, which we intent to promote to compliance test suites for the various
language bindings.

1.4 Structure of this Document

The following sections will will document the various known implementations of
GFD.90, grouped by implementation languages. For each implementation lan-
guage, major language bindings design issues will be discussed and motivated.
The document will then discuss the individual metrics defined above, and doc-
ument experience and evidence which supports each one of them individually.

saga-core-wglogf .org 6

GFD-E.176 Implementation Experiences February 7, 2011

2 Implementation Experiences

This chapter discusses the implementation experiences for GFD.90 by describing
the following 6 SAGA implementationsﬂ

1. C++
(a) SAGA-C++ (LSU)
2. Java

(a) DESHL (DEISA, EPCC)
(b) JavaSAGA (VU)
(c) JSAGA (IN2P3)

3. Python

(a) Python wrapper for C++ (LSU)
(b) Python wrapper for Java (VU)

The implementation of GFD.90 revealed a variety of problems, from typos, over
semantic inconsistencies, to some items which were simply not implementable
in the form prescribed. Almost all of these problems are explicitely listed in the
appendix, which is the source for the accompanying revision of GFD.90. The
descriptions below will discuss some, but not all of these problems, mostly due
to space constraints.

At time of this writing, two Python implementations of the SAGA Core API
Specification exist. Both are implemented as wrappers, around the JavaSAGA
and the C++4+ SAGA implementations, respectively, using the standard wrap-
ping solutions Jython and Boost-Python. For historical reasons, these bindings
diﬁevﬂ We describe these bindings here anyway, as their existence proves that
Python language bindings can in fact be sensibly defined.

2.1 Implementation Properties

The scope of the SAGA API as defined in [5] will most likely convince the reader
that there don’t exist many middleware systems, if any, that can provide the
complete semantic set of functionality required to implement the SAGA API.
Further, the extensibility of the API suggests that a single middleware system
can certainly not be expected to cater for future API extensions.

2alphabetically ordered, grouped by language binding
3There is an ongoing effort at the VU, Amsterdam, to unify the two python language
bindings. That effort is not advanced enough to be included here.

saga-core-wglogf .org 7

GFD-E.176 Implementation Experiences February 7, 2011

Any complete SAGA implementation will, in practice, need to bind
against multiple middleware implementations (backends).

Further, as different middleware backends are likely to overlap in their func-
tionality, SAGA implementations will likely be able to switch between backends
for the same functionality, possibly at runtime. This will support application
portability, which is a declared goal of the SAGA effort.

Many SAGA implementation will, in practice, allow switching be-
tween different backends, at compile, link, and/or runtime.

One widely accepted design pattern to implement the above properties is the
adaptor pattern: small, self contained pieces of code (adaptors) translate re-
quests from the upper layers (the SAGA API) into requests to the lower layers
(the individual backends) — see figure

-
‘ Application ‘ 8
SAGA
API
SAGA API Packages (managed by 'Engine’)
‘ Jobs Files ‘ ‘ RPC ‘
SAGA Adaptors
‘ Files & | ‘ ‘ Files ‘ ‘ Files,
(local) (globus) (XtreemOp)
API Py
Middleware tsv
o
‘ libc ‘ ‘ GridFTP ‘ ‘ XtreemOS ‘ T

Figure 1: Abstract architecture of SAGA implementations

In fact, from the six individual SAGA implementations we discuss in this doc-
ument, three are adaptor based implementations and two are wrappers around
adaptor based implementations. Even the sixth implementation follows that
general design principle, and includes a rather self contained abstraction layer
which interfaces the SAGA implementation to its (only) backend.

It seems prudent to assume that SAGA implementations will often
be adaptor based.

It should be noted that the SAGA API specification in no way prescribes these
properties, nor does it prescribe any specific implementation architecture — ap-
parently those properties simply emerge from the boundary conditions defined
by the API’s scope and structure.

saga-core-wglogf .org 8

GFD-E.176 C++ February 7, 2011

2.2 CH+

At the moment, there exists one SAGA implementation in C++, called SAGA-
C++, which implicitely defines the C+4 language bindings of SAGA. As the
SAGA Core API specification is object oriented, the mapping to the C++ lan-
guage is straight forward, and can almost always be directly derived from the
IDL specification in GFD.90.

The use of C++-templates has been kept to a minimum, and has only been
used in those cases where explicit type conversions are required on APIT level,
e.g. on task.get_result <type> Q.

A major point of discussion for the language bindings has been the rendering
of asynchronous object construction, the access to the default SAGA session
instance, and the rendering of the SAGA task model. Those items have been
rendered in ways which seem consistent with similar renderings in other widely
used C++ libraries, and are thus considered to be successfully mapped into the
C++ language.

As a side note: SAGA-C++ follows the design principles discussed in the previ-
ous section to the letter: it is adaptor based, has late-binding, and is extensible.
Its portability and BSD like license makes it usable in a wide variety of appli-
cation environments. As the initial investment in implementing SAGA is very
high, it seems thus unlikely at the moment that a second C++ implementation
will be forthcoming anytime soon. That will prove to be a problem for finaliz-
ing the C++ language binding specification process — which is not part of this
document though.

saga-core-wglogf .org 9

GFD-E.176 SAGA-C++ February 7, 2011

2.3 SAGA-C++

2.3.1 Overview

The SAGA C++ implementation, called SAGA-C++, originates from within
the SAGA Research and Working group in OGF — the implementation group at
CCT/LSU is driving both the specification of the C++ language bindings, and
the evolution and convergence of the SAGA Core API Specification.

The implementation work has been funded from a wide variety of resources:
CCT internal funds, several projects funds such as XtreemOS (EU), the LONI
Institute, two OMII-UK projects, NSF and TeraGrid funding, etc. Additional to
a core of about three developers, several students, GSO(ﬂ students, and several
external developers contributed to the code base. The work fostered a number
of academic publications, centering on application level grid interoperability,
programming patterns for distributed applications, grid/cloud interoperation,
and software engineering aspects of the SAGA implementation. The implemen-
tation, along with its Python binding (see section is used by a number of
projects, mostly in the US, UK and Germany.

For additional material (documentation, tutorial slides, test suite results, mail-
ing list, download links, etc.), see http://saga.cct.lsu.edu/.

2.3.2 Implementation Scope

SAGA-C++ implementation is a complete SAGA compliant implementation:
it covers all functional and non-functional packages of the SAGA Core API
specification.

As most SAGA implementations, an adaptor based late binding architecture
was chosen to provide seamless runtime portability between different backends.
Backend bindings exist for a wide variety of systems, such as (implemented
packages in brackets):

e local systems: Unix/POSIX, MacOS, Windows (all packages)
e globus (context, job, file, replica)

e condor (context, job)

e ssh (context, job, file)

e clouds: ec2, eucalyptus, nimbus (context, job), opencloud (sector/sphere:
context, job, file)

o Isf (context, job)

4Google Summer of Code, sponsored by OMII-UK

saga-core-wgQogf .org 10

GFD-E.176 SAGA-C++ February 7, 2011

e glite (context, job)
e hbase (file)

o hdfs (file)

o htbl (file)

e kfs (file)

e ninfg (rpc)

Some adaptors have been implemented, funded or supported by external groups.
An adaptor generator exists which simplifies the development of adaptors sig-
nificantly.

Noteworthy is that an ever increasing set of unit tests exists, which is ensuring
(i) the syntactic correctness of the C++ API, (ii) the semantic correctness
of the C++ implementation, and (iii) the semantic equivalence of the various
middleware bindings of that implementation. At the same time, several aspects
of application-level interoperability have been demonstrated by SAGA-C++
based projects, by (i) using SAGA-C++ to coordinate distributed application
components; and (ii) by using different adaptor sets within one application for
semantically equivalent operations.

In terms of engineering, boost has been chosen as the main C++ toolkit to
support the implementation work. All boost versions starting from 1.33.1 are
supported. Boost is the only external dependency of the implementation — all
other dependencies are introduced on adaptor level (globus, ...).

As the SAGA specification work continues within OGF, the implementation has
also been used to prototype and implement SAGA extensions, such as Service
Discovery, Adverts, CPR, and Information Services. Adaptors to these experi-
mental packages exist, some are part of the regular release package.

2.3.3 Implementation experiences (Language independent)

As both the SAGA-C++ implementation from CCT and the JavaSAGA imple-
mentation from VU have been very early implementations, which started well
before the SAGA API became an OGF proposed recommendation, the encoun-
tered issues are numerous and diverse. This section will only discuss a sample
of those issues, selected by their significance in respect to specification evolution
and language binding definition (see next section). Basically all issues have been
resolved in the SAGA Revised Specification or in the implementation.

The C++ implementation of SAGA includes a proof-of-concept implementation
of the SAGA Bulk optimization as described in the Core specification. SAGA
Bulk operations are defined as a collection of asynchronous (task) operations

saga-core-wgQogf .org 11

GFD-E.176 SAGA-C++ February 7, 2011

which are managed in a single task container. The C4++ implementation could
demonstrate that this is actually implementable, and performant.

The SAGA-C++ implementation motivated the inclusion of a SAGA URL class
into the Core Specification, to provide a more uniform semantic to URL inter-
pretation. In particular with respect to late binding, and the related need for
URL translation for different backends, that additional URL class is very ben-
eficial.

A number of job description attributes have been identified as missing from
the Core Specification, and have been added to the Revised Specification since.
Amongst them are the JSDL SPMD attributes, JobProject, and others.

Many SAGA operations have default flags specified. In many cases, however,
these default flags turned out to be impractical, contradictory, or simply annoy-
ing. That has been rectified throughout the Revised Specification.

Semantic clarifications have been motivated for the Revised Specification, for
many API calls, such as migrate(), file.move(), session.add_context(),
and others. Although the SAGA API Specification is rather specific in specifying
method semantics, inter-method semantics turned out to be contradictory or
cumbersome in several places — that has been addressed since.

2.3.4 Implementation experiences (Language dependent)

As SAGA-C++ is as of now the only C++ implementation of the SAGA Spec-
ification, it in some ways defines the (draft) C++ language bindings. Most
language specific issued we encountered can thus be regarded as language bind-
ing issues instead of real SAGA Specification issues.

The most prominent item is certainly the rendering of the SAGA task model
in C++. Although the current rendering is rather elegant (it follows quite
closely to what is described in the C++ based examples of the SAGA Core
Specification), it left a large number of syntactic and semantic details to be
fixed. This is however considered to be successfully solved, and the asynchronous
SAGA operations are complete and consistently implemented.

Further, as discussed in the errata appendix in section [A] the exception based
error reporting mechanism originally defined by the SAGA Specification turned
out to be impossible to implement, and needed some relaxation.

Another major challenge was the semantic clarification of the implications of the
late binding architecture which is used by most SAGA implementations to date.
Late binding has in particular implications for error reporting (see above), object
state, object lifetime, and parameter interpretation. Especially URL handling

saga-core-wgQogf .org 12

GFD-E.176 SAGA-C++ February 7, 2011

and interpretation is challenging in late binding implementations. Many small
and large clarifications have been added to the Revised Specification, based on
the C++ implementation experiences.

SAGA-C++ leans heavily on the boost [2] libraries. A small set of boost classes
are actually exposed on API level. It is not the purpose of this document to
justify or discuss that SAGA API dependency on boost — that is left to the
C++ language binding document.

In general, the (Revised) Specification and the C++ bindings converged quite
smoothly, and no outstanding issues with the specification are known which
need to be addressed in the current version of the SAGA API.

2.3.5 Summary

We consider the SAGA-C++ implementation to be a complete and compliant
SAGA API implementation. Numerous experiments in a variety of applications
and projects [12, [10, [4, 9], [6] [7], [8, [13] have shown the ability of the implementa-
tion to provide application-level interoperation and portability on both semantic
and syntactic level. The SAGA extension mechanism (stable Look-&-Feel, ad-
ditional packages, late-binding implementations) has proven to be very useful
and ensures a continuous evolution of the SAGA landscape.

saga-core-wgQogf .org 13

GFD-E.176 Java February 7, 2011

2.4 Java

In most repects, the Java language bindings are, just as the C++ bindings,
a straight forward mapping from the GFD.90 IDL specification to the Java
language. There are a number of SAGA API elements, however, which required
some deviation from the IDL in order to achieve a native look and feel.

In order to cater to the Java typical object live cycle, object creation is done
via class factories. That approach elegantly solves the problem of asynchronous
object creations.

The SAGA task model has been rendered slightly different from C++4: task
instances are not typeless as in C++, but are typed according to the return
values of the method call the task represents.

The SAGA File API focuses on random I/O. While that is available in Java, the
dominating file I/O paradigm is doubtless streaming I/O. The Java language
bindings are thus adding streaming I/O to the file package.

Apart from those points, the Java langage bindings are sticking to the object
oriented syntax as defined in the GFD.90 IDL. The language bindings are imple-
mented as a set of abstract Java interface classes, which are then implemented
by the SAGA implementations. It should be noted that the JavaSAGA and the
JSAGA implementations use the same set of Java interface classes, and are thus
by definition interchangably usable by any SAGA application written in Java.

saga-core-wglogf .org 14

GFD-E.176 DESHL February 7, 2011

2.5 DESHL

2.5.1 Overview

DEISA is a European consortium of leading national supercomputing centers
that deploy and operate a persistent, production quality, distributed supercom-
puting environment. DEISA is, at its core, a grid of HPC resources. The
purpose of this FP6-funded EU research infrastructure is to enable scientific
discovery across a broad spectrum of science and technology, by enhancing and
reinforcing European capabilities in the area of high-performance computing.

Amongst the DEISA objectives are (i) user transparency (users should not be
aware of complex grid technologies); and (ii) applications transparency (minimal
intrusion on applications, which, being part of the corporate wealth of research
organizations, should not be strongly tied to an IT infrastructure). Toward
those objectives, the JRA-7 group of the DEISA project designed DESHIEL a
single user interface for accessing OGSA-based services for distributed resources,
which integrates several existing user-level tools to provide high-level services
for:

e authentication, authorization and accounting;
e job preparation, submission and monitoring;
e data movement for job input and output;

e other areas as determined by DEISA user requirements.

In order to keep DESHL independent from the underlying heterogeneous infras-
tructure, JRA-7 decided to add a SAGA layer between the DESHL command-
line client and the lower level grid access libraries. That additional layer is a
partial SAGA implementation, and this section describes its implementation
experiences.

2.5.2 Implementation Scope

The "DEISA Services for the Heterogeneous Layer” (DESHL) SAGA library
covers only the SAGA job and file packages, and the SAGA Look-&-Feel, the
semantics for the other SAGA packages was at that time not provided by the
middleware DESHL was targeting (Unicore-5) . DESHL is thus a partial SAGA
implementation. It binds to the DEISA infrastructure, via the ARCON client
library which interfaces to Unicore.

As DESHL was designed and implemented while the SAGA implementation was
still in flux, and not published, it did not follow all API draft changes, at least

SDEISA Services for the Heterogeneous management Layer

saga-core-wgQogf .org 15

GFD-E.176 DESHL February 7, 2011

not immediately. The early implementation experience did, however, influence
the evolution of the SAGA specification, also after it got published, and the
description of DESHL is thus included in this document, even if DESHL is,
strictly spoken, not fully SAGA compliant.

A significant motivation to use SAGA for the DESHL API was to shield the
DESHL developers from future changes to the DEISA infrastructure, e.g. the
planned transition from Unicore-5 to Unicore-6 — even at that early age of
SAGA, infrastructure changes were deemed more disruptive than specification
evolution. It has been found that was possible to port DESHL from Unicore-5
to Unicore-6 leaving the actual application code largely unchanged.

2.5.3 Implementation experiences (Language independent)

The SAGA Job and File packages mapped rather well to the required function-
ality of the DESHL command line utility. The implementation led to number
of changes to the SAGA API being proposed, and ultimately accepted, such as
the support for job I/O staging, the closer adherence to the JSDL specification,
and the generalization of the SAGA context semantics (which was too limiting
for the DEISA use case).

2.5.4 Implementation experiences (Language dependent)

The actual rendering of the language independent SAGA specification into Java
language bindings was relatively straight forward, but differed at several points
from the nowadays more widely used SAGA Java bindings from the VU Ams-
terdam (which will most likely form the basis of a future Java language binding
specification in OGF). Nevertheless, key design elements, such as the use of
factories for object creation, or the syntax for attribute settings, are the same
in both renderings.

2.5.5 Summary

Despite of the differences between the DESHL implementation and the future
SAGA API bindings for Java, which can be traced to the early start of DESHL,
we can confidently claim that in our experience, the SAGA API is implementable
in Java, and that the implementation provides the syntactic and semantic scope
of the SAGA API, as indented.

saga-core-wgQogf .org 16

GFD-E.176 JavaSAGA February 7, 2011

2.6 JavaSAGA

2.6.1 Overview

The JavaSAGA project consists of two parts: providing Java language bindings
for the SAGA specification, and providing an implementation. JavaSAGA has
been developed at the Computer Science department of the Vrije Universiteit,
and was funded by OMII-UK. Funding was for one man-year. Of that man-year,
about 10 weeks were spent creating the language bindings. The rest of it was
used for the implementation.

The Java SAGA language bindings mostly follow the SAGA specification. Some
exceptions were made, e.g. to follow the Java coding conventions for naming
identifiers, and to use exceptions instead of POSIX error codes. More details
are provided below.

The JavaSAGA implementation is adaptor-based. The implementation provides
service provider interfaces (SPIs) that must be implemented by the adaptors.
In addition, it provides base classes for the adaptors that may be used to ease
programming. The implementation uses late binding. Due to Java, the im-
plementation engine and most adaptors are completely operating-system inde-
pendent. JavaSAGA is also self-contained, i.e. it runs out of the box. All
dependencies are included (except, of course, user-specific credentials, such as
globus certificate files or ssh key files).

Additional material (documentation, download links, etc.) is available at [I].

2.6.2 Implementation Scope

JavaSAGA provides implementations of all packages of the SAGA Core API
specification. Bindings exist for a variety of systems:

e Local systems: namespace, file, job
Available in any OS that has a JVM (e.g. Unix, MacOS, Windows, etc.)

e generic: replica
Provides a replica system built on top of other SAGA packages.

e Globus: context, job, namespace, file
Provides (through JavaGAT) support for Globus 2.x, Globus 3.x and
Globus 4.0. A JavaGAT adaptor for Globus 4.2 is almost done.

e SSH: context, job, namespace, file
There are two versions: one using your local ssh command, and one talking
directly to an ssh server via the Trilead SSH library for Java.

saga-core-wgQogf .org 17

GFD-E.176 JavaSAGA February 7, 2011

e GridSAM: job
JavaGAT has a GridSAM adaptor, but JavaSAGA also provides an adap-
tor that was built directly on top of the GridSAM client libraries.

e glite: context, job, namespace, file
e FTP: context, file, namespace
e SFTP: context, file, namespace

e TCP sockets: stream
Implemented on top of the class java.net.Socket

e Apache XML-RPC: rpc

e Unicore: job

2.6.3 Implementation experiences (Language independent)

For some packages, JavaSAGA only provides an adaptor that is built on top of
the JavaGAT system. JavaGAT can be seen as a predecessor to SAGA. It is
also adaptor-based, uses late binding, and has adaptors for Globus, gLite, ssh,
and others. Since JavaGAT is not SAGA, some SAGA features could not be
implemented. In the remainder of this section, we will list the limitations of the
JavaSAGA implementation per SAGA package.

Stream package

The JavaGAT adaptor for the stream package is built on JavaGAT’s EndPoint
and Pipe classes. The adaptor implementation also depends on the JavaGAT
AdvertService. The TCP adaptor for the stream package is built on the
java.net.Socket class.

Both adaptors do not support the STREAM_WRITE metric because the un-
derlying systems do not support it either. The same holds for the method
waitFor (Activity.WRITE) and stream attributes (although the BLOCKING
attribute may be supported in the future).

Job package

The JavaGAT adaptor for the job package is built on JavaGAT Resources, for
which various adaptors are available. There is also a dedicated SAGA adaptor
for GridSAM. Neither of these adaptors currently implements Job.getSelf ()

saga-core-wgQogf .org 18

GFD-E.176 JavaSAGA February 7, 2011

because we do not know any generic method (yet) by which a Java application
can steer itself. Furthermore, JavaGAT is missing the functionality to imple-
ment the following SAGA features:

e The job description attributes SPMDVARIATION, THREADSPERPRO-
CESS, JOBCONTACT, and JOBSTARTTIME.

Post-stage append and pre-stage append in the file transfer directives.

The job attribute TERMSIG.

The job metrics JOB_SIGNAL, JOB_.CPUTIME, JOB_.MEMORYUSE,
JOB_VMEMORYUSE, and JOB_.PERFORMANCE.

e The methods signal(), checkpoint (), and migrate().

The mapping from a SAGA job description to a JavaGAT job description is
mostly possible, as is the mapping from SAGA job methods to JavaGAT job
methods. However, this does not mean that JavaGAT adaptors actually imple-
ment everything.

The following SAGA features could not be implemented on top of GridSAM:

e the job description attributes WORKINGDIRECTORY, INTERACTIVE,
JOBCONTACT, and JOBSTARTTIME.

e post-stage append and pre-stage append.
e the job attribute TERMSIG.

e the job metrics JOB_SIGNAL, JOB_.CPUTIME, JOB_.MEMORYUSE,
JOB_.VMEMORYUSE, and JOB_.PERFORMANCE.

e the methods signal (), suspend(), resume(), checkpoint (),
and migrate().

Namespace package

Both the JavaGAT and the Local adaptor support all SAGA namespace features,
except for links and permissions (see below for more details).

File package

saga-core-wgQogf .org 19

GFD-E.176 JavaSAGA February 7, 2011

Both the JavaGAT and the Local adaptor did not implement the extended I/0O
methods, for which there is no support in JavaGAT nor Java’s local file API.
In addition, readP() and writeP() only inherit the default implementation
in the base class of the adaptor, which translates the patterns into seeks and
contiguous reads/writes. This approach is very generic, but probably also very
slow. The JavaGAT adaptor use JavaGAT’s RandomAccessFile underneath,
when it is available for the middleware layer at hand. For other backends,
FileInputStream or FileOutputStream are used. The Local adaptor uses the
more efficient java.nio.FileChannel class underneath to provide fast access
to local files.

LogicalFile package

JavaSAGA only contains a generic adaptor for logical files. In this adaptor,
a logical file is simply a normal ASCII file that contains a list of URLs, one
per line. The SAGA file and namespace packages are used to manipulate the
contents of a logical file.

RPC package

JavaSAGA contains an XML-RPC adaptor, which completely implements SAGA’s
RPC package on top of the Apache XML-RPC client library. The only limita-
tion of this adaptor is that at most one OUT parameter is supported.

2.6.4 Implementation experiences (language dependent)

The first hurdle to take was to provide Java SAGA language bindings while the
SAGA specification was still taking shape. The design of the language bindings
was guided by two rules:

1. Follow the Java Code conventions.

2. Keep as close as possible to the SAGA specification.

Below is a summary of decisions made in the Java SAGA language bindings.
The Java language version used is the one provided in J2SE 5.0, which is widely
available. It is also the first version that provides generics and enumerated types,
which are used throughout the SAGA language bindings for Java. J2SE 5.0
also provides the java.util.concurrent package, which is used for the Java
language bindings of SAGA tasks.

saga-core-wgQogf .org 20

GFD-E.176 JavaSAGA February 7, 2011

Java language bindings for SAGA

For facilitating both application writing and implementing SAGA, providing
the Java language bindings in the form of directly usable files was important.
Both interfaces and classes from the language-independent SAGA specification
are therefore provided in the form of Java interfaces. Since interfaces do not
have constructors, factories are provided to create SAGA objects. This setup
requires a bootstrap mechanism for creating factory objects. The mechanism
uses the saga.factory system property, to be set by the user to point to an
implementation-specific meta-factory, which in turn has methods to create fac-
tories for all SAGA packages.

SAGA Object

Since Object is a predefined class in Java, we opted to name the SAGA base
object SagaObject. The ObjectType class is not included in the Java language
bindings, since Java has an instanceof operator.

File I/O and Java file streams

Earlier experience with JavaGAT has shown that having implementations of
the Java streams java.io.InputStream and java.io.OutputStream is very
much appreciated by Java application programmers, since these are the types on
which most Java I/0 is based. Therefore, it was decided to add specifications for
FileInputStream and FileOutputStream to the file package. The file class
from the SAGA specifications is also specified in the Java language bindings.

Files and error handling

The SAGA specification refers to POSIX error return codes for several methods.
However, it is not to be expected that these will be available in existing Java
grid middleware. Also, in Java, error conditions are supposed to be passed on by
means of exceptions. We therefore decided that where the SAGA specifications
refer to POSIX error codes, a SagaIOException is to be thrown in these cases.
This may be less informative than a specific error code, but is more "Java-like’,
and probably easier to implement on existing Java grid middleware.

saga-core-wgQogf .org 21

GFD-E.176 JavaSAGA February 7, 2011

Permissions and links

Currently, the Java language does not provide any building blocks for permis-
sions and links (not even locally). Although all methods concerning links and
permissions are specified in the Java language bindings, none of the adaptors in
the JavaSAGA implementation actually support them. These methods throw a
NotImplemented exception when they are invoked. Future Java versions may
alleviate this problem somewhat.

Buffer

In Java, arrays have a size that can be examined at run-time. The buffer creation
methods in the Java language bindings therefore specify either a size, in which
case the buffer is implementation-managed, or a byte array, in which case the
buffer is application-managed.

Error handling

The layout of the result of the method getMessage() in the SagaException
class follows the usual Java convention instead of the SAGA specification. The
result prescribed by the SAGA specification can be obtained by invoking the
toString () method (as usual in Java).

A simple mechanism exists for storing and examining exceptions that may be
thrown by adaptors in adaptor-based SAGA implementations. In such imple-
mentations, the top-level exception (the one highest up in the SAGA exception
hierarchy) is not always the most informative one, and the implementation is not
always capable of selecting the most informative exception. In these cases, the
implementation may opt to add the individual exceptions as nested exceptions
to the exception thrown. The language bindings make it possible to iterate over
the nested exceptions (i.e. the SagaException class implements the interface
java.lang.Iterable). This mechanism is now also incorporated in the SAGA
specification.

Jobs

An important deviation from the language-independent SAGA specification is
that the method JobService.runJob() is specified differently: the input, out-
put and error stream OUT parameters are not specified here, since Java has no

saga-core-wgQogf .org 22

GFD-E.176 JavaSAGA February 7, 2011

OUT parameters. Unfortunately, their absence, according to the SAGA spec-
ifications, implies a non-interactive job. Since interactive jobs should still be
supported, a boolean parameter is added here to specify whether the job is in-
teractive. If interactive, the streams can be obtained from the Job using the
methods Job.getStdin(), Job.getStdout (), and Job.getStderr().

NSDirectory

A Java-specific extension in the package is that the NSDirectory interface ex-
tends java.lang.Iterable. Applications can thereby easily iterate over all the
entries in a directory.

Permissions

The SAGA permission flags are specified as a Java enumeration class. Methods
are included to combine them into integers, and to determine if they are set in
an integer (in Java, enumerations cannot be treated as integers).

RPC

In contrast to the language-independent SAGA specification, the Parameter
interface does not extend the Buffer interface. The motivation for this is that
most Java language bindings for RPC systems use java.lang.Object as the
type of parameters, which implies that at least some types are serialized auto-
matically (e.g. via runtime inspection of the actual type). If each parameter
would be a SAGA buffer, the type of the parameters would be limited to byte
arrays.

Stream

Since Java programmers are used to the classes java.io.InputStream and
java.io.OutputStream, a mechanism is provided to obtain such streams from
a Stream object.

Tasks

saga-core-wgQogf .org 23

GFD-E.176 JavaSAGA February 7, 2011

An earlier version of the SAGA specification modeled the result of asynchronous
operations as an additional OUT parameter. Java does not have OUT param-
eters, and the async and task versions already have a return value: the task
object. The question arose where to leave the result values of tasks. This re-
sulted in the decision to make the Task object itself a container for the result
value, and to add a method to obtain the result. This decision has found its
way back into the SAGA specification.

In addition, many small inconsistencies were discovered during the development
of JavaSAGA. These have been fixed in the SAGA specification.

2.6.5 Summary

JavaSAGA implements all packages of the SAGA specification, and is therefore a
complete SAGA compliant implementation. Various institutes and projects are
already using and/or experimenting with JavaSAGA, including the neuGRID
team at the University of the West of England in Bristol (UK), the Science &
Technology Facilities Council (UK), CERN, and the XtreemOS project.

saga-core-wglogf .org 24

GFD-E.176 JSAGA February 7, 2011

2.7 JSAGA

2.7.1 Overview

JSAGA is a Java implementation of the SAGA specification. It has been devel-
oped at the IN2P3 Computing Center (CC-IN2P3), in the context of a grid inter-
operability project (IGTMD) funded by the French National Research Agency
(ANR). The main goal of JSAGA is to enable uniform access to existing pro-
duction infrastructures, and namely to submit jobs to several heterogeneous
infrastructures with a single description of these jobs.

JSAGA is adaptor based. Adaptor interfaces are designed to ease plugin devel-
opment and to enable efficient usage of underlying APIs. These interfaces are
service-oriented. Some of them are optional and are used for optimization pur-
pose. Some of them offer several options to implement the same functionality
with different approaches. JSAGA uses early binding to middleware.

The core engine and most adaptors are independent of the operating system,
and they do not require any additional package to be installed. For example,
one does not need to run JSAGA on a glLite User Interface machine in order to
be able to use gLite middleware.

Besides implementing the SAGA specification, JSAGA is also using it to en-
able seamless job submission to existing grid infrastructures. It deals with grid
infrastructures heterogeneity (e.g. network filtering rules, supported certificate
authorities, commands and services available on execution sites), in order to run
collections of jobs on several infrastructures efficiently and seamlessly.

For additional material (documentation, slides, mailing contacts, download links,
etc.), see http://grid.in2p3.fr/jsaga/.

2.7.2 Implementation Scope

JSAGA aspires to be a "SAGA compliant partial implementation”.

It does not implement the RPC and stream functional packages, because these
features are not available on many existing production infrastructures. Hence,
implementing these packages would not help us achieve our main goal, which is
enabling uniform access to these very infrastructures.

The other packages of the SAGA specification are almost fully implemented.
Current limitations are related to ’steerable’ interface (used by class ’job_self’
only) from Monitoring Look-&-Feel package, to ’checkpoint’ and ’get_self’ meth-
ods from Job functional package, and to scattered, pattern-based and extended

saga-core-wgQogf .org 25

GFD-E.176 JSAGA February 7, 2011

I/O methods from File functional package. All these methods currently throw a
"NotImplemented’ exception for any back-end. They are not yet supported be-
cause they have not been requested by current users, but we plan to implement
them for improving compliance to the SAGA specification.

The JSAGA implementation of the Job, Namespace, File and Replica functional
packages, as well as the Context Look-&-Feel package, is based on adaptors,
as described earlier. These adaptors support components from various grid
middlewares: gLite, Globus Toolkit (pre-WS and WS), Unicore, Naregi. They
also support more commonly used technologies, such as X509, HTTPS, SFTP,
SSH, and other components such as SRB and iRODS.

2.7.3 Implementation experiences (Language independent)

Thanks to the accuracy and consistency of the SAGA specification, the JSAGA
implementation experience went rather smoothly. The SAGA interfaces cover
almost all of our needs, so we had to deviate from the specification for a few
issues only.

Context Look-&-Feel package:

A security context sometimes needs to be initialized before it is used by a func-
tional package, but this can not be done at any time because the result of initial-
ization depends on which attributes are set. In order to enable on-demand con-
text initialization, we added an implicit behavior to the method ’getAttribute’
for attribute name "UserID’; this method initializes the security context before
returning the value of attribute "UserID’ as requested. The Revised Specifica-
tion allows for initialization of the security context; this is done when adding the
context to the session. Consequently, we will remove our specific behavior and
implement the one specified in the upcoming Revised Specification document
instead.

When several security context candidates are available for a given URL, JSAGA
throws an exception instead of automatically trying to connect with each of
them to find the right one to use. We made this choice because connecting
with an unexpected security context could lead to problems that are painful to
recover, such as creating files with unexpected owner, submitting jobs that will
be allowed to run but not to store their result, locking accounts because of too
many failed connection attempts. The description of the ’AuthenticationFailed’
exception has been modified in the SAGA Revised Specification to take into
account our solution, and we will use this exception instead of our current non-
standard one.

Job functional package:

saga-core-wgQogf .org 26

GFD-E.176 JSAGA February 7, 2011

We added, on user request, a job metric for intermediate job states, such as
state "QUEUED’. This proposal for change has been rejected because it is not
supported by all back-ends and because this feature can be supported through
the ’job.state_detail’ metric. Indeed, although this metric was added to provide
backend specific state details, it could also be used to provide SAGA implemen-
tation specific state details. Hence, we will replace our current backend state
details implementation (which is not used) with a JSAGA specific state details
implementation, and then we will remove our non-standard job metric.

We made ’CPUArchitecture’ and ’OperatingSystemType’ job description at-
tributes scalar in order to prevent the risk of information loss when converting
a SAGA job description to a JSDL job description. This is fixed in the Revised
Specification.

Among the widely used job description attributes, attribute ’Queue’ is the only
one that prevents to create a job description that can be submitted to sev-
eral heterogeneous infrastructures. Indeed, there is no inter-grid convention for
queues, neither for their naming, nor for the underlying semantic (although job
lifetime is widely used). Since a queue is part of the resource location rather
than part of the job description, we chose to encode it within the resource URL
instead. This breaks application portability. Resolution of this issue will pos-
sibly be postponed to next JSDL version, or to a SAGA resource extension,
whichever comes first. This change does not exactly violate the letter of the
SAGA specification, but uses a semantic ambiguity.

We added, upon contributor’s request, a read-only job attribute to dump the job
description generated for the target backend. This attribute does not need to
be included in the SAGA specification because it is used for debugging purpose
only. The SAGA specification is silent about debugging extensions to the API.

File and Namespace functional packages:

We added, on user request, a method to the namespace: :entry class in order to
enable to get the last modification date of the entry. The Revised Specification
includes a get_mtime() for that purpose, and we will rename our method to
use that name.

For the remove() method of the namespace: :entry class, we made the flag
Recursive optional for empty directories, so that we can implement the behav-
ior of the rmdir Unix command. This is fixed in the Revised Specification.

In order to fix a performance issue when reading or writing many small files
with some protocols, we added a flag which enables to bypass file existence
check when creating a new namespace: :entry instance. Using a non-standard
flag breaks application portability, in particular if other SAGA implementations
throw exception on unknown flags, or if they use the same bit for their own
non-standard flag. Since no agreement has been reached yet, this item will be

saga-core-wgQogf .org 27

GFD-E.176 JSAGA February 7, 2011

postponed to a later version of the SAGA specification. Until then, we will keep
our non-standard flag in JSAGA, while warning users that it breaks application
portability and proposing asynchronous calls as a (partial) alternative. This
issue has been acknowledged by the SAGA group, and has been added as a
TODO item for the next API revision®l

2.7.4 Implementation experiences (Language dependent)

JSAGA implements the interfaces of the reference Java language binding of the
SAGA specification. Since these interfaces are provided by the Vrije Univer-
siteit, Amsterdam, we didn’t have to cope with any language dependent issue.
See section in the JavaSAGA description for a detailed discussion on lan-
guage dependent issues.

The reference Java language binding of SAGA enables using all the SAGA fea-
tures without any dependency on the implementation classes (except the name
of the implementation bootstrap). This binding takes advantage of Java 1.5
features, in particular the support for generics and type-safe enumeration.

The only issue encountered with this binding consisted in the need to patch it
in order to provide our own implementation of the "URL’ class. Our motivation
for this was to support automatic URL encoding, to support relative paths
and to correctly manage local file URLs on Windows operating system. This
issue is solved since version 1.0 release candidate 2 of the binding. Indeed, an
"URLFactory’ class has been added to enable SAGA implementers to provide
their own implementation of the '"URL’ class without any patching.

2.7.5 Summary

JSAGA follows the SAGA API specification. It also implements the reference
Java language binding interfaces in order to guarantee syntactic compliance and
prevent any compilation error when replacing a Java-based SAGA implementa-
tion with another one. It aspires to be a "SAGA compliant partial implementa-
tion” for multiple backends. However, this goal has not been reached completely
since some methods are not yet implemented.

JSAGA applications are diverse, and include an academic and industrial grid
web portal (Elis@ by CS-SI), advanced job submission tools (like SimExplorer
by the Complex Systems Institute, and JJS by CC-IN2P3), and a multi-protocol
file browser (JUX by CC-IN2P3).

6The Revision does not attempt to fix this issue, as the resulting changes have, at least po-
tentially, rather far reaching semantic implications for other SAGA API methods and classes.

saga-core-wgQogf .org 28

GFD-E.176 JSAGA February 7, 2011

In order to fulfill all the requirements of our users, we had to make only a
few small deviations from the SAGA specification in our implementation. Al-
most the entire resulting mismatch is now disappearing through modification of
the JSAGA implementation, the SAGA specification itself, or both. Only two
deviations remain: the place for specifying the job resource queue name and
the additional namespace: :entry flag. These issues will be postponed to later
versions of Open Grid Forum specifications, respectively JSDL/SAGA resource
extension and SAGA.

The SAGA specification provides a high-level interface, which suits perfectly
well for uniform access to heterogeneous middleware. It is simple to use, and
allows for efficient use of the lower-level legacy interfaces without exposing the
user to the complexity. Consequently, the JSAGA group recommends accepting
GFD.90 as an OGF standard.

saga-core-wgQogf .org 29

GFD-E.176 Python February 7, 2011

2.8 Python

Just as the C++ and Java Language bindings, the Python bindings strive to
adhere to the SAGA syntax as defined in the GFD.90 IDL specification, while
making sure that language specific syntactic elements are used to provide a
language native look and feel to python programmers.

A notable different to the other bindings is the rendering of the task model,
which is expressed by method flags. Other minor deviations, such as the all-
uppercase spelling or enums, are simple consequences of python API conven-
tions.

Both discussed Python implementations are based on the same set of Python
API classes. SAGA applications in python can thus immediately switch between
both implementations.

saga-core-wgQogf .org 30

GFD-E.176 Python over C++ February 7, 2011

2.9 Python over C++

2.9.1 Overview

The C++4 SAGA implementation described in section includes a python
binding, which is implemented by using Boost-Python. Additional components
on wrapper level ensure that SAGA elements such as attributes, asynchronous
operations, and file I/O are rendered in a pythonesque manner.

It may be interesting to know that a significant number of projects prefer the
use of the python bindings over the C+4 bindings, presumably for ease of
prototyping and development, simple deployment, and cultural reasons.

2.9.2 Implementation Scope

As the discussed python bindings represent a thin wrapper around the C++
SAGA implementation, both architecture and semantics of operations is exactly
as discussed in section [2.3] The same set of adaptors is available for C++ and
Python, and thus the same middleware bindings are available.

2.9.3 Implementation experiences (Language independent)

As the development of the C++/Python wrapper occurred in parallel to the
C++ implementation work, all comments made there apply here as well. There
are no known issues which would need addressing from the SAGA Specification
side at the moment.

It should be noted, that several projects use the C++ and python bindings in
parallel. Due to the fact that one wraps the other implementation, interoper-
ability may come as no big surprise. However, we would like to mention that
the same developers using both bindings experienced no difficulties whatsoever
when mapping code from one binding to the other, both in terms of syntax and,
more importantly, semantics.

2.9.4 Implementation experiences (Language dependent)

Although boost-python is an acknowledged path to provide Python interfaces
to C++ libraries and classes, the resulting Python API is not always considered
to be 'native enough’ to be 'real python’. Obviously this is a very subjective and
gradual criterion, which is also partially addressed by additional implementation
work on wrapper and python level. However, the issue remains that the exact

saga-core-wgQogf .org 31

GFD-E.176 Python over C++ February 7, 2011

python binding definition is likely to change the syntax, if not the semantics, of
the current C++/Python wrapper.

No other major issues are thus far known to limit the implementability of the
SAGA Core API specification in Python.

2.9.5 Summary

By definition, or by design, the C++/Python wrapper is a just as functionally
complete and compliant SAGA implementation as the C++ implementation.
The wrapping for python is mainly an engineering issue, somewhat diluted
though by cultural and language binding issues. The successful use of the
C++/Python wrapper in numerous projects [I1), 14} 4] underpins the imple-
mentability and usefulness of the wrapper, and documents, in our opinion, the
implementability of the SAGA API Specification.

saga-core-wgQogf .org 32

GFD-E.176 Python over Java February 7, 2011

2.10 Python over Java
2.10.1 Overview

Python SAGA started as a master’s project at the Computer Science depart-
ment of the Vrije Universiteit Amsterdam. The aim of the project was to first
create Python language bindings for SAGA, and then create an implementation
of these language bindings on top of JavaSAGA. We nicknamed the language
bindings 'PySAGA’, and the implementation on top of JavaSAGA *JySAGA’.

All semantic functionality of JySAGA is provided by the underlying JavaSAGA
implementation. JySAGA only acts as a thin layer between the Python language
bindings and the JavaSAGA implementation. JySAGA combines Python and
Java by using Jython: a Python interpreter written in Java. Jython makes it
possible to mix Python and Java code, which made it relatively easy to translate
Python calls to their counterparts in JavaSAGA.

2.10.2 Implementation Scope

JySAGA implements all packages specified in the SAGA Core API on top
of JavaSAGA. JySAGA can therefore access exactly the same middleware as
JavaSAGA.

2.10.3 Implementation Experiences (Language Independent)

Since JySAGA only acts as a thin layer between Python and JavaSAGA, the
development of JySAGA did not trigger any new issues when mapping SAGA
calls to middleware. However, its development did trigger some bugs in the
JavaSAGA implementation. These have all been fixed by now.

2.10.4 Implementation Experiences (Language Dependent)
The design of the Python language bindings for SAGA followed two rules:

1. Follow the Python style guide.
2. Keep as close as possible to the SAGA specification.
Various open issues have been discussed on the mailing list saga-rg@ogf .org.

In the remainder of this section, we will list the most prominent issues and
design choices.

saga-core-wgQogf .org 33

GFD-E.176 Python over Java February 7, 2011

Python language bindings for SAGA

The Python language bindings are provided as a set of Python modules. Each
module corresponds to a SAGA package, and contains skeleton code for all
classes of that package. The classes contain all methods but without an im-
plementation. Each method is extensively documented using Doxygen strings.
These can be automatically converted to browsable documentation of the lan-
guage bindings.

A Python SAGA developer can simply copy all the module files and implement
all skeleton classes. A set of generic unit tests is available to test the functionality
of a Python SAGA implementation.

Naming

The following naming conventions were used:

o class names: CapitalizedWords (e.g. JobService)
e package and module names: lowercase (e.g. file.py)

e methods, parameters, and variables: lowercase_with_underscores
(e.g. Directory.open_dir())

e constants: UPPERCASE (e.g. file.Flags.CREATE)

These conventions stem from the Python style guide, with the exception of the
convention for constants. The reason to use UPPERCASE for constants was
that SAGA defines the Permission enums 'Exec’ and 'None’, but both ’exec’
and 'None’ are reserved keywords in Python. Using UPPERCASE ensured a
consistent naming scheme for all constants without any keyword clashes.

Method Overloading

Methods are defined in Python by using the def keyword followed by the method
name and the parameters in brackets. Since def also overwrites a previously
defined method with the same name, method overloading (multiple methods
with the same name but different parameter types) is not supported in Python.
Although the same effect can be implemented explicitly by inspecting the param-
eter types at runtime, problems arise when SAGA specifies overloaded methods
with completely different sets of parameter types. An example of an overloaded
method is the copy() method from the ns_entry and ns_directory classes

saga-core-wglogf .org 34

GFD-E.176 Python over Java February 7, 2011

in the namespace package, which has the same name but different parameters
and semantics in both classes. The language bindings therefore specify dif-
ferent names for such methods (in this example, NSEntry.copy_self() and
NSDirectory.copy (), respectively).

Multiple Return Values

A method in Python can return multiple variables from one method call. This
language feature was used for methods in the SAGA specification that specify
multiple OUT parameters. An example is the method JobService.run_job(),
which returns both the job itself and three handles to stdin, stdout, and stderr.

Default Parameter Values

Python can specify default values for parameters in a method definition. Param-
eters with default values should come after parameters without default values, so
Python can determine which value in a method call belongs to which parameter.
Default values improve usability, but imply a specific parameter ordering. The
order of method parameters in the Python language binding therefore differs
sometimes from the order in the SAGA specification. Examples are the meth-
ods file.read(size=-1, buffer=None) and file.write(buffer, size=-1).
This parameter order was chosen because a data buffer is always needed for
writing, but is optional for reading.

Asynchronous Methods and Tasks

To deal with asynchronous methods and the creation of tasks, a tasktype
parameter has been added to all methods in subclasses of the Async class.
This parameter is always the last one in a method signature and defaults to
TaskType.NORMAL. Consequently, a method is executed synchronously unless
the tasktype parameter is specified. The syntax of both synchronous and asyn-
chronous method calls therefore remains consistent and does cause conflicts.

Getters and Setters

Using getter and setter methods is not regarded "real python”. Many class
variables on which getters and setters operate can therefore also be accessed

saga-core-wgQogf .org 35

GFD-E.176 Python over Java February 7, 2011

through so-called properties, which specify which methods Python should call
when a class variable is read or written.

The reason for also specifying getters and setters is that all methods in subclasses
of the Async interface can be executed both synchronously and asynchronously,
including getters and setters. A property can only use one of these two versions.
The Python language bindings therefore define both a getter/setter and a prop-
erty to access each class variable. Using a property will call the synchronous
version of a getter or setter, while the getters and setters themselves can be
used for both versions.

Binary Data

Python 2.x does not have a byte type. It was therefore difficult to find a good
equivalent for SAGA’s buffer class, which encapsulates a sequence of bytes.
Strings can be used instead, but prevent a user from supplying an application-
managed buffer to a read () call.

The current solution in the language bindings is to use Python’s array module
with type b’ (signed char). This deviates from the Python wrapper in the C++
SAGA implementation, which does not include the buffer class at all and only
recognizes (immutable) strings as input to or output from methods that would
normally use SAGA buffers. It remains an open issue whether the whole concept
of SAGA buffers is "real python”, and whether it is necessary to include then
in the Python language bindings or not.

Python versions

The Python language bindings conform to Python version 2.2, which is widely
used and supported.

Python 2.6 also supports abstract base classes, which could be used to provide
the Python language bindings as a set of directly usable files instead of a set of
skeleton classes.

Version 3.0 of Python (released in December 2008) is incompatible with the
previous versions. It distinguishes separate types for text and binary data, as
opposed to previous versions that used strings of Unicode or 8-bit characters.
The new data types byte and bytearray are used to hold a single binary byte
and a mutable buffer of binary data. The bytearray type could (also?) be used
to implement SAGA buffers in Python.

It remains an open question which Python version should be required for the

saga-core-wgQogf .org 36

GFD-E.176 Python over Java February 7, 2011

Python language bindings. An extra limiting factor it that JySAGA depends
on Jython, which currently only supports Python up to version 2.5.

2.10.5 Summary

The Python language bindings expose all the SAGA Core API classes in a
Python-specific manner. JySAGA is SAGA compliant implementation in Python
that implements these language bindings completely. A similar glue layer be-
tween the Python language bindings and the C++4 SAGA implementation is
currently being developed.

saga-core-wgQogf .org 37

GFD-E.176 Conclusions February 7, 2011

3 Conclusions

This document’s intent is to prove that implementations of GFD.90 are inter-
operable, as required by GFD.1 in order to promote GFD.90 to a full OGF
standard recommendation. For that purpose, we defined interoperability as a
combination of ”implementability (language independent), and implementation-
interoperability (language dependent)” (see section [I})

We have discussed different implementations of the SAGA Core API specifica-
tion, and have demonstrated that

A-1: multiple diverse language bindings can be and have been defined which are
able to express the complete semantic and syntactic scope of the SAGA
Core API, while not compromising SAGA’s major design goals, as outlined
in GFD.90, in section 2; and

A-2: multiple implementations of these language bindings exist, which cover
the complete scope of GFD.90.

Even if those language bindings are not yet fed into the OGF standardization
pipeline, they exist and are in useﬂ

We have further shown, that

B-1: these implementations can interchangeably be used to execute the seman-
tically same set of grid operations.

In particular, we presented two completely independent implementations which
adhere to the same language binding (Java). We have further demonstrated that
a single python implementation can interface to different SAGA implementa-
tions in C4++ and Java, thus providing the full scope of these implementations.
Also, we demonstrated that the C++ implementation and the derived Python
implementation can interchangeably be used to implement semantically inter-
operable software components.

We thus conclude that the SAGA Core API specification as defined
in GFD.90 (with applied errata) can be interoperably implemented
in the sense required by GFD.1, and recommend to advance GFD.90
to full OGF Recommendation.

7Also, one cannot sensibly expect standardized language bindings before the standardiza-
tion of the language independent specification is completed.

saga-core-wgQogf .org 38

GFD-E.176

Intellectual Property Issues

February 7, 2011

4 Intellectual Property Issues

4.1 Contributors

This document is the result of the joint efforts of many contributors, and in
particular implementors. The authors listed here and on the title page are
those taking responsibility for the content of the document, and all errors. The
editors (underlined) are committed to taking permanent stewardship for this
document and can be contacted in the future for inquiries.

Mathijs den Burger
mathijs@cs.vu.nl

Vrije Universiteit (VU)
Dept. of Computer Science
De Boelelaan 1083
1081HV Amsterdam

The Netherlands

Manuel Franceschini
livewire@koltern.com

VU, The Netherlands

Malcolm Illingworth

m.illingworth@epcc.ed.ac.uk

EPCC
The University of Edinburgh

James Clerk Maxwell Building

Mayfield Road
EH9 3JZ Edinburgh, UK

Ceriel Jacobs
ceriel@cs.vu.nl

VU, The Netherlands

Shantenu Jha
sjha@cct.lsu.edu

Center for Computation and
Technology (CCT/LSU)
Louisiana State University
216 Johnston Hall

70803 Baton Rouge
Louisiana, USA

Hartmut Kaiser
hkaiser@cct.lsu.edu
CCT/LSU

Thilo Kielmann
kielmann@cs.vu.nl

VU, The Netherlands

Andre Merzky
andre@merzky.net

CCT/LSU

Rob van Nieuwpoort
rob@cs.vu.nl
VU, The Netherlands

Sylvain Reynaud
Sylvain.Reynaud@in2p3.fr
Centre de Calcul IN2P3/CNRS
Domaine scientifique de La Doua
43 bd du 11 Nov.1918

69622 Villeurbanne Cedex
France

Ole Weidner
oweidner@cct.lsu.edu

CCT/LSU

saga-core-wglogf .org

39

GFD-E.176 Intellectual Property Issues February 7, 2011

The authors would like to thank all contributors to the SAGA specification and
implementations, and the members of the SAGA OGF groups, for feedback and
support.

4.2 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual
property or other rights that might be claimed to pertain to the implementation
or use of the technology described in this document or the extent to which
any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Copies of
claims of rights made available for publication and any assurances of licenses to
be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of
this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights,
patents or patent applications, or other proprietary rights which may cover tech-
nology that may be required to practice this recommendation. Please address
the information to the OGF Executive Director.

4.3 Disclaimer

This document and the information contained herein is provided on an “As
Is” basis and the OGF disclaims all warranties, express or implied, including
but not limited to any warranty that the use of the information herein will not
infringe any rights or any implied warranties of merchantability or fitness for a
particular purpose.

4.4 Full Copyright Notice

Copyright (C) Open Grid Forum (2006). All Rights Reserved.

This document and translations of it may be copied and furnished to others,
and derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by
removing the copyright notice or references to the OGF or other organizations,
except as needed for the purpose of developing Grid Recommendations in which

saga-core-wglogf .org 40

GFD-E.176 Intellectual Property Issues February 7, 2011

case the procedures for copyrights defined in the OGF Document process must
be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked
by the OGF or its successors or assignees.

saga-core-wglogf .org 41

GFD-E.176 Errata Discussion February 7, 2011

A Errata Discussion

As discussed in many places throughout the document, implementing the origi-
nally submitted GFD.90 required a number of changes and amendments. None
of those required major structural changes to the API, nor did the scope of the
API change in any way. The Revised Specification will be submitted to the
OGF editor along with this document. This appendix lists and discusses the
main changes between the original and the amended GFD.90. A large number
of typos, spelling errors and grammatical errors have been corrected as well —
those changes are not listed individually. The list is unsorted.

1. package saga::file, class iovec:

The set_offset and set_len_in methods also throw BadParameter when
”out of bounds”:
size >= 0 && len_in + offset > size

2. package saga::file, class file:

The read_v and write_v methods also throw BadParameter when ”out of
bounds” if the above conditions for their iovecs apply. When no len_in
is specified, the buffer size is used instead as len_in. If, in this case,
offset > 0 a BadParameter exception is thrown.

Note: an exception is only thrown on the I/O methods, as otherwise, it
would often not be possible to increase the offset on a buffer at all, as
offset and len_in cannot be set together atomically:

iovec iov (10); // size = 10, len_in = 10, offset = 0

iov.set_offset (3); // bang

iov.set_len_in (7); // would create a valid state again
3. package saga::file, class file:

The iovec constructor can also throw NotImplemented, as its base buffer
can, and as all constructors should be able to. This has been more ex-
plicitely clarified for Look-&-Feel classes, too.

4. The default flag for file open should be Read. The Create flag should
imply Write. The CreateParents flag should imply Create.

5. CreateParents semantics is now clarified:
f.mv ("file.txt", "newdir/thing", flags::CreateParents)

The above creates a new directory 'mewdir’; and renames ’file.txt’ to
'newdir /thing’.

f.mv ("file.txt", "newdir/thing/", flags::CreateParents)

The above creates new directories 'newdir/thing’, and renames ’file.txt’ to
'newdir/thing/file.txt’.

saga-core-wglogf .org 42

GFD-E.176 Errata Discussion February 7, 2011

10.

So, if the target does not exist, all path element before the last slash are
considered parent directories to be made.

”The callback classes can maintain state between initialization and suc-
cessive invocations. The implementation MUST ensure that a callback
is only called once at a time, so that no locking is necessary for the end
user.”

But also, the callback may remove conditions to be called again, i.e. shut
down the metric, read more than one message, etc. Implementations
MUST be able to handle this. This is documented now.

. URL expansion is now clarified:

“Any valid URL can be returned on get_url(), but it SHOULD not
contain .. or . path elements, i.e. should have a normalized path element.
The URL returned on get_url() should serve as base for the return values
on get_cwd() and get_name(): In general it should hold:”

get url() = get cwd() + / + get name()

)

The leading path elements, however, can be *>.”> or ’..

saga::url src_1 ("ftp://localhost/pub/data/test/info.dat");
saga::url src_2 ("gridftp://localhost/data/test/info.dat");
saga::url tgt ("../../test.txt");

saga::filesystem file f_1 (src_1);
saga::filesystem file f_2 (src_2);

f_1.move (tgt); // tgt is expanded relative to u0
f_2.move (tgt); // tgt is expanded relative to ul

The exception ordering is now relaxed (from MUST to SHOULD), and a
changed order is recommended.

In particular, the algorithm to find the most specific exception has been
changed to ignore the NotImplemented exception as long as there were
other exceptions thrown. NotImplemented will be reported only if there
are only NotImplemented exceptions in the exception list.

For a detailed discussion on the changed exception ordering, see subsec-

tion [A1l

. The task.get_result () semantics has been changed, to act as a universal

synchronization point. This makes SAGA task objects more similar to
futures. get_result() is now waiting, and returning retvals. It also
re-throws if the task arrived in a Failed state.

As in Java’s URL class, url.get_port() now returns -1 by default, i.e.
if port is unknown.

saga::url u ("../tmp/file.txt");
int port = u.get_port (); // returns -1

saga-core-wglogf .org 43

GFD-E.176 Errata Discussion February 7, 2011

11.

12.

13.

14.

15.
16.

17.
18.

19.

20.
21.

22.

23.

24.

25.

26.

The default flag for open_dir() is now Read.

The task.run() postcondition is now ’left New state’ instead of ’is
in Running state’, to avoid races with tasks and jobs entering a final
state immediately.

The job description now supports more JSDL attributes. In particular,
JobProject and WallTimeLimit have been added.

The context.set_default() method is now gone — its semantics has
been added to the session.add_context () call, which performs a deep
copy of the context first.

This change breaks backward compatibility. It is implemented
in all SAGA implementations.

Read and Write flags are now added to the saga: :namespace package.

The specification now clarifies the URL character escaping mechanisms.
A method to return the unescaped string has been added.

close() is not throwing IncorrectState anymore.

The specification now clarifies that object.clone() does not copy the
object id, but assigns a new, unique one.

The specification now clarifies, for namespace: :dir.copy (src, tgt),
that (i) if src can be parsed as URL, but contains an invalid entry name,
a BadParameter exception is thrown, and (ii) if src is a valid entry name
but the entry does not exist, a DoesNotExist exception is thrown.

The prototype parameter names for namespace methods have been fixed.

The rpc constructor argument 'url’ now defaults to an empty URL. Also,
the parameter name has been fixed.

The description of task_container.cancel (float timeout) now men-
tions a default value for timeout (0.0).

The SAGA class diagram is now in sync with the class hierarchy defined
by the specification.

The default value for the rpc: :parameter size is now fixed (was specified
inconsistently).

The object type enum does not contain Exception anymore, as exception
does not inherit from saga: :object.

The saga: : job class now has an attribute which reports its service man-
ager url, as that URL is needed if a job_service instance is to be created

saga-core-wgQogf .org 44

GFD-E.176 Errata Discussion February 7, 2011

in the same security domain, for example. Otherwise, a job_service cre-
ated with no URL can never be reconnected to, e.g. to find previously run
jobs:
std::string id;
{
saga::job::service js ();
saga::job j = js.run_job ("/bin/sleep 1000");
id = j.get_job_id O;

saga:url u = j.get_attribute (’’ServiceURL’’);
saga::job::service js (u);

saga::job j = js.get_job (id);

j.cancel Q;

}

27. The url::translate() call now accepts an additional session parameter
to (a) allow to select eligible backends, and (b) provide security for backend
communication.

28. session.list_contexts() now returns deep copies of session contexts,
not shallow copies. That avoids the change of contexts which are in use.

29. A job executable can now also be searched for in the PATH environment
variable, if available.

30. A working directory from a job’s job_description now gets created if it
does not yet exist.

31. several saga classes are now always deeply copied, never shallow. These
classes are: url, exception, context, metric, job_description, and
task_container.

32. The stream: : server now has a connect () method, which creates a client
stream instance if the stream: :server represents a remote connection
point.

This change breaks backward compatibility. It is implemented
in all SAGA implementations.

33. The connect () calls of both the stream: :service and stream: :stream
class now support a timeout parameter.

34. It is now clarified that dir.get_num_entries() and dir.list() are not
to include *.” and *..” .

35. GFD.90 defines several functional packages which all have their own SIDL
namespace, amongst them 'file’ and a 'logical_file’. Those package
namespaces are reflected in the implementation name spaces. The two

saga-core-wglogf .org 45

GFD-E.176 Errata Discussion February 7, 2011

names above however turned out to be ill chosen: amongst other points,
'file’ clashes with a reserved word in Python, and logical_file’ leads
to cumbersome class names like *saga::logical_file::logical_file’,
or to confusing names like ’saga: :logical_file::logical_directory’.

Those packages are thus renamed to 'filesystem’ and 'replica’, respec-
tively.

This change breaks backward compatibility. It is implemented
in all SAGA implementations.

36. It was clarified what happens to the state of a moved saga: : file instance.

saga-core-wglogf .org 46

GFD-E.176 Errata Discussion February 7, 2011

A.1 Detailed discussion of amended exception ordering

The exception reporting and ordering problem exposed during the implemen-
tation of GFD.90 is the single most invasive amendment to the SAGA API
Specification. We thus represent here a detailed description and analysis of the
problem, as performed by the SAGA group within OGF.

Problem Description:

The exception precedence list in the original specification did not always make
sense:

e The NotImplemented exception is actually the least informative one, and
should be at the end of the list.

e For late-binding implementations, and for implementations with multiple
backends in general, it is very difficult to determine generically which
exception is more interesting to the end user.

Problem Example
Assume an implementation of the SAGA file API binds (late) to HTTP and
FTP.

Assume the following setup: on host a.b.c, an http server with http root set
to /var/www/, and an ftp server with its ftp root set to /var/ftp/ are both
deployed, using the same credentials for access.

The following files exist, and are owned by root (system permissions in brackets)

/var/wuw/etc/ (x--)
/var/www/etc/passwd (xxx)
/var/www/usr/ (xxx)
/var/ftp/etc/ (xxx)
/var/ftp/usr/ (x--)

/var/ftp/usr/passwd (xxx)

Assume a SAGA application wants to open any://a.b. c/etc/passmﬂ for read-
ing. The WWW backend will throw PermissionDenied, the FTP backend will
throw DoesNotExist.

Both exceptions are correct. There are valid use cases for either exception to
be the 'more specific’, and thus, in the specifications argumentation, the more

8The any schema is, in SAGA, a placeholder, which allows the SAGA implementation to
autonomously chose a backend and/or protocol to perform the requested operation.

saga-core-wglogf .org 47

AW N =

© ®w N o o

10

11

12

GFD-E.176 Errata Discussion February 7, 2011

dominant one.

Further, upon accessing any://a.b.c/usr/passwd, the situation is exactly in-
versed. Of course, the implementation will have no means to deduce the in-
tention of the application, and to decide that suddenly the exception from the
other backend is more useful.

Problem Diagnosis

The root of the problem is the ability of SAGA to be implemented with late
binding. Any binding to a single middleware will result in exactly one error
condition, which is to be forwarded to the application. Also, implementations
with early bindings can (and indeed will) focus on exceptions which originate
from the bound middleware binding for that specific object, and will again
be able to report exactly one error condition. (Note that for early binding
implementations, the initial operation which causes the implementation to bind
to one specific middleware is prone to the same exception ordering problem.)

So it is mostly for late binding implementations that this issue arises, when
several backends report errors concurrently, but the standard error reporting
mechanism in most languages defaults to report exactly one error condition.

Possible Solutions

A global, predefined ordering of exception will be impossible, or at least arbi-
trary. The native error reporting facilities of most languages will by definition
be inadequate to report the full error information of late binding SAGA imple-
mentations.

That leaves SAGA language bindings with three possibilities:
(A) introduce potentially non-native error reporting mechanisms;

Code Example

saga::filesystem::file £ ("any://a.b.c/etc/passwd");
std::list <saga::exception> el = f.get_exceptions ();

// handle all backend exceptions
for (int i = 0; i < el.size (); i++)
{
try
{
throw ell[i];
}
catch (saga::exception::DoesNotExist)

{

saga-core-wglogf .org 48

13

14

16

17

18

19

10

11

12

13

w

© ® N o

10

11

12

13

14

15

GFD-E.176 Errata Discussion February 7, 2011

// handle exception from ftp backend

}
catch (saga::exception::PermissionDenied)
{
// handle exception from www backend
}

}

(B) acknowledge the described limitation, document it, and stick to the native
error reporting mechanism;

Code Example

try
{
saga::filesystem::file £ ("any://a.b.c/etc/passwd");
}
catch (saga::exception::DoesNotExist)
{
// handle exception from ftp backend
}
catch (saga::exception::PermissionDenied)
{
// handle exception from www backend (which will not be forwarded in
// our example, this this will never be called)
}

(C) a mixture of (A) and (B), with (B) as default.

Code Example

try
{
saga::filesystem::file f ("any://a.b.c/etc/passwd");
}
catch (saga::exception::DoesNotExist e)
{

cout << e.what ();
cout << e.get_message ();
// DoesNotExist

std::list <std::string> ml = e.get_all_messages ();
// DoesNotExist

// PermissionDenied ...

// NotImplemented

saga-core-wglogf .org 49

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

GFD-E.176 Errata Discussion February 7, 2011

return;
}
catch (saga::exception e)
{
// handle all backend exceptions
std::list <saga::exception> el = e.get_all_exceptions ();
// DoesNotExist // no infinite recursion
// PermissionDenied
// NotImplemented
for (int i = 0; i < el.size (); i++)
{
try
{
throw ell[i];
}
catch (saga::exception::DoesNotExist)
{
// handle exception from ftp backend
std::1list <saga::exception> el = e.get_all_exceptions O;
// exception from backend A
// exception from backend B
/...
std::list <saga::string> el = e.get_all_messages ();
// exception message from backend A
// exception message from backend B
//
}
catch (saga::exception::PermissionDenied)
{
// handle exception from www backend
}
/...
}
}

Note that (C) may not be possible in all languages.

Discussion of the C++ Bindings

C++ is actually be able to implement (C). The C++ bindings would then
introduce a saga: :exception class, and the respective sub classes, which rep-
resent the 'most informative/specific’ exception. How exactly the 'most infor-
mative/specific’ exception is selected from multiple concurrent implementations
is left to the implementation, and cannot sensibly be prescribed by the specifica-
tion nor the language binding, as discussed above. (The spec could propose such

saga-core-wgQogf .org 50

GFD-E.176 Errata Discussion February 7, 2011

a selection algorithm though). However, the saga: :exception class would have
the additional ability to expose the full set of backend exceptions, for example
as list:

std::list <saga::exception> exception.get_all_exceptions ();

Further, it would be advisable (for all language bindings actually) to include all
error messages (from all backend exceptions) into the error message of the top
level exception (this is already implemented in CCT’s C++ implementation):

catch (saga::exception e)

{
std::cerr << e.what ();

3

would print the following message:

exception (top level): DoesNotExist
exception (ftp): DoesNotExist - /etc/passwd does not exist
exception (www): PermissionDenied - access to /etc denied

Conclusion

The group decided to move for option (C), and the sPecification was amended
accordingly.

saga-core-wgQogf .org 51

GFD-E.176 References February 7, 2011

References

1]
2]
3]

SAGA Web Pages.
BOOST C++ Libraries. http://www.boost.org/.

C. Catlett. GFD.1 - Global Grid Forum Documents and Recommendations:
Process and Requirements. GGF Community Praxis, Global Grid Forum,
2001.

T. Cortes, C. Franke, Y. Jégou, T. Kielmann, D. Laforenza, B. Matthews,
C. Morin, L. Prieto, A. Reinefeld, D. Level, et al. XtreemOS: a Vision for
a Grid Operating System. White paper, 2008.

T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, A. Merzky, J. Shalf,
and C. Smith. GFD.90 — SAGA Core API Specification. OGF Proposed
Recommendation, Open Grid Forum, 2007.

S. Hirmer, H. Kaiser, A. Merzky, A. Hutanu, and G. Allen. Generic sup-
port for bulk operations in grid applications. In Proceedings of the 4th
international workshop on Middleware for grid computing, page 9. ACM,

2006.

S. Jha, H. Kaiser, Y. El Khamra, and O. Weidner. Design and Implemen-
tation of Network Performance Aware Applications using Saga and Cactus.
In 3rd IEEE Conference on eScience2007 and Grid Computing, Bangalore,
India. Citeseer, 2007.

S. Jha, H. Kaiser, A. Merzky, and O. Weidner. Grid Interoperability at
the Application Level using Saga. In IEEE International Conference on
e-Science and Grid Computing, pages 584-591, 2007.

H. Kaiser, A. Merzky, S. Hirmer, and G. Allen. The SAGA C++ Reference
Implementation. In Second International Workshop on Library-Centric
Software Design (LCSD’06), page 101. Citeseer, 2006.

H. Kaiser, A. Merzky, S. Hirmer, G. Allen, and E. Seidel. The SAGA
C++ Reference Implementation: a Milestone toward new High-Level Grid
Applications. In Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, page 184. ACM, 2006.

A. Luckow, L. Lacinski, and S. Jha. SAGA BigJob: An Extensible and
Interoperable Pilot-Job Abstraction for Distributed Applications and Sys-
tems.

A. Merzky, K. Stamou, and S. Jhal23. Application Level Interoperability
between Clouds and Grids. In Proceedings of the 2009 Workshops at the
Grid and Pervasive Computing Conference, pages 143-150. IEEE Computer
Society, 2009.

saga-core-wgQogf .org 52

http://www.boost.org/

GFD-E.176 References February 7, 2011

[13] R. Sirvent, A. Merzky, R. Badia, and T. Kielmann. GRID SuperScalar and
SAGA: Forming a High-Level and Platform-Independent Grid Program-
ming Environment. In CoreGRID Integration WorkShop, volume 2005.
Citeseer, 2005.

[14] R. van Nieuwpoort, T. Kielmann, and H. Bal. User-Friendly and Reliable
Grid Computing Based on Imperfect Middleware. In Proceedings of the
ACM/IEEE Conference on Supercomputing (SC07), 2007.

saga-core-wgQogf .org 53

	Introduction
	Purpose of this Document
	Notational Conventions
	Interoperability Metrics
	Structure of this Document

	Implementation Experiences
	Implementation Properties
	C++
	SAGA-C++
	Java
	DESHL
	JavaSAGA
	JSAGA
	Python
	Python over C++
	Python over Java

	Conclusions
	Intellectual Property Issues
	Contributors
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice

	Errata Discussion
	Detailed discussion of amended exception ordering

	References

