
GWD-R-P.134 Mario Antonioletti, EPCC
OGSA-DMI WG Michel Drescher, Fujitsu
 Allen Luniewski, IBM

Steven Newhouse, Microsoft
Ravi Madduri, Argonne National Laboratory

 13 June 2008

OGSA-DMI Functional Specification 1.0

Status of This Document

This document specifies two port types to support the instantiation and management of data
transfers within and across Grid deployments. Distribution is unlimited.

Copyright Notice

Copyright © Open Grid Forum (2007-2008). All Rights Reserved.

Trademark

Open Grid Services Architecture and OGSA are trademarks of the Open Grid Forum.

Abstract

The Open Grid Services Architecture Data Movement Interface (OGSA-DMI) specification defines
a standardized mechanism for moving data from its source to its destination. By abstracting this
movement, the client complexity for moving data within a grid is greatly reduced. OGSA-DMI
defines two port types for initiating, scheduling and managing data transfers from a given source
to a specified destination. The source and destination are described through Data End Point
References (DEPRs), a specialized form of a WS-Address.

An OGSA-DMI service will use the properties of the data to be transferred and the properties of
the infrastructure to decide what the best underlying transfer protocol to undertake the actual data
transfer is for the given combination of data source and sink. By this means OGSA-DMI provides
a common interface, though its abstraction layer, that can be used to span the preferred transfer
mechanisms used across many different types of Grid infrastructures.

This version of the specification aims to ensure that the OGSA-DMI port types are composable
with other Web Service (WS) specifications whilst being agnostic about any specific WS
rendering. OGSA-DMI is only concerned with the moving of data, i.e. bytes. Any associated
semantics are the responsibility of higher level services that leverage OGSA-DMI. The OGSA-
DMI framework is general enough to cater for the movement of single elements of data or
composites.

GWD-R-P.134 Mario Antonioletti, EPCC
OGSA-DMI WG Michel Drescher, Fujitsu
 Allen Luniewski, IBM

Steven Newhouse, Microsoft
Ravi Madduri, Argonne National Laboratory

 27 May 2008

ogsa-dmi-wg@ogf.org 2

Contents

1. Introduction ...4

1.1 Goals ...4

1.2 Non-Goals...4

2. Notational Conventions..4

2.1 XML Namespaces..5

3. Architecture...5

3.1 Topology ...6

3.2 Entities ..7

3.2.1 Data Endpoint Reference (DEPR) ...7

3.2.2 Source ..7

3.2.3 Sink...7

3.2.4 Data Transfer Factory Port Type..7

3.2.5 Data Transfer Instance Port Type ..8

3.2.6 Data Transfer Client ..8

3.2.7 Data Transfer User..8

3.3 Using the DEPRs ...9

3.3.1 Explicit Data Transfer..9

3.3.2 Defined Data Transfers...9

3.3.3 Logical Data Transfers ..9

4. Data Transfer Factory Port Type ..10

4.1 Properties..10

4.1.1 [supported protocol] ..10

4.1.1.1 [undo strategy]..11

4.1.1.2 XML Representation ..12

4.2 Operations ..12

4.2.1 GetDataTransferInstance ...12

4.2.1.1 [service instance]..12

4.2.1.1.1 XML Representation ...13

4.2.1.2 [source DEPR] or [sink DEPR] ..13

4.2.1.2.1 XML Representation ...14

4.2.1.3 [transfer requirements]...16

4.2.1.3.1 XML Representation ...16

4.2.2 GetFactoryAttributesDocument ..17

4.2.2.1 [factory attributes]...17

4.2.2.1.1 XML Representation ...17

4.3 Faults...18

4.3.1 UnsatisfiableRequestOptionsFault...18

4.3.2 NoSourceSinkProtocolMatchFault ...18

4.3.3 NoDataLocationsSpecifiedInEprFault..18

4.3.4 CustomFault ..18

5. Data Transfer Instance Port Type...18

5.1 Properties..19

5.1.1 [start time] ..19

5.1.1.1 XML Representation ..19

5.1.2 [state]..19

5.1.2.1 XML Representation ..20

5.1.3 [state value] ...20

5.1.4 [completion time] ...21

5.1.4.1 XML Representation ..21

5.1.5 [total data size] ..21

GWD-R-P.134 Mario Antonioletti, EPCC
OGSA-DMI WG Michel Drescher, Fujitsu
 Allen Luniewski, IBM

Steven Newhouse, Microsoft
Ravi Madduri, Argonne National Laboratory

 27 May 2008

ogsa-dmi-wg@ogf.org 3

5.1.5.1 XML Representation ..22

5.1.6 [bytes transferred] ...22

5.1.6.1 XML Representation ..22

5.1.7 [attempts] ...22

5.1.7.1 XML Representation ..22

5.2 Operations ..22

5.2.1 Start ..22

5.2.2 Activate ..23

5.2.3 Stop ..23

5.2.4 Resume..23

5.2.5 Suspend ...23

5.2.6 GetState ...23

5.2.6.1 [state]...23

5.2.7 GetInstanceAttributesDocument ..23

5.2.7.1 [instance attributes] ..23

5.2.7.1.1 XML Representation ...24

5.3 Faults...24

5.3.1 IncorrectStateFault ..24

5.3.2 FailedStateTransitionFault..24

5.3.3 TransferProtocolNotInstantiatableFault ...24

5.3.3.1 XML Representation ..24

5.3.4 RequestedStateNotSupportedFault ...26

5.4 Lifecycle ..26

5.4.1 Lifecycle States ...26

5.4.1.1 Created ...26

5.4.1.2 Scheduled ...27

5.4.1.3 Transferring ..27

5.4.1.4 Done..27

5.4.1.5 Suspended..27

5.4.1.6 Failed...27

5.4.1.7 Failed:Clean..27

5.4.1.8 Failed:Unclean..27

5.4.1.9 Failed:Unknown..27

5.4.2 Lifecycle Events...28

5.4.2.1 Started...28

5.4.2.2 Activated ...28

5.4.2.3 Done..28

5.4.2.4 Suspended..28

5.4.2.5 Resumed...28

5.4.2.6 Failed...28

6. Security Considerations...28

7. Author Information..29

8. Acknowledgements ..30

9. Intellectual Property Statement ...30

10. Disclaimer ...30

11. Full Copyright Notice ...30

12. References ...31

13. Reference XML Schema ...31

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 4

1. Introduction

The Open Grid Services Architecture Data Movement Interface (OGSA-DMI) specification
describes two port types that provide operations to co-ordinate the transfer of data from a source
location to a sink (destination) location. What happens to the data at the source location once the
data has been transferred is beyond the scope of this specification. The OGSA-DMI port types
have been designed to encapsulate many different data transfer mechanisms – indeed this is the
value provided by a service implementing these port types. It enables the user consuming the
service to focus on what is important to them – the transfer of data from one location to another
whilst observing a few optional constraints. The selection of the most suitable underlying data
transfer protocol, from those that are supported by the service, is undertaken by the OGSA-DMI
service – without any direct user involvement.

1.1 Goals

This version of the specification aims to:

- Ensure that the OGSA-DMI port types are composable with other Web Service (WS)
specifications.

- Ensure that the OGSA-DMI specification defines the semantics of its port types but is
agnostic about any specific WS rendering.

- Provide normative renderings of the OGSA-DMI specification for different ‘flavors’ of WS.
- Be agnostic about the semantics and type of data being transferred.
- Consider (from the DMI perspective) that the data transfer consists of a single logical

data transfer moving from a data source to a data sink. This logical data transfer (e.g. a
directory) may consist of multiple data items (i.e. files).

1.2 Non-Goals

For this version of the specification we consider the following topics to be out of scope. We will
consider these important topics for consideration in future revisions:

- The notion of bandwidth negotiation or the establishing of service level agreements.
- The co-ordination, or scheduling, of a data transfer with any other activity.
- Encapsulation of data replication information, for the purposes of reliability or data

transfer optimization, within the source or sink service and the propagation of this
information within the OGSA-DMI architecture.

- Imposition of constraints as to how data is made available through a source or what
happens with the bytes that are delivered to a sink.

- Knowledge of, or guarantees, being made regarding the semantics of the data being
transferred.

Implementations MAY provide any of these capabilities on an ad hoc basis provided they are able
to still interoperate with other implementations, i.e. without changing the interface or the
semantics of any of the OGSA-DMI defined operations.

2. Notational Conventions

The key words ‘MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,”
“SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” are to be interpreted as
described in RFC 2119 [BRADNER1]

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 5

When describing abstract data models, this specification uses the notational convention used by
the XML Infoset [XML Infoset]. Specifically, abstract property names always appear in square
brackets (e.g., [some property]).

When describing concrete XML schemas [XML Schema Part 1, Part 2], this specification uses the
notational convention of WS-Security [WS-Security]. Specifically, each member of an element’s
[children] or [attributes] property is described using an XPath-like notation (e.g.,
/x:MyHeader/x:SomeProperty/@value1). The use of {any} indicates the presence of an element
wildcard (<xs:any/>). The use of @{any} indicates the presence of an attribute wildcard
(<xs:anyAttribute/>).

2.1 XML Namespaces

This specification uses a number of namespace prefixes throughout; they are listed in Table 1.
Note that the choice of any namespace prefix is arbitrary and not semantically significant (see
[BRAY]).

Prefix Namespace

s11 http://schemas.xmlsoap.org/soap/envelope

rns http://schemas.ogf.org/rns/2006/09/rns

wsa http://www.w3.org/2005/03/addressing

xs http://www.w3.org/2001/XMLSchema

dmi http://schemas.ogf.org/dmi/2007/05/dmi

Table 1: Namespaces and prefixes used in this document

3. Architecture

A common requirement within Grid environments is the ability to transfer data from one location
to another. The services and protocols required to support such data transfers will vary between
Grid deployments, the actor requesting a data transfer, and potentially the amount of data that is
to be transferred. The sole purpose of this specification is to control and co-ordinate the transfer
of bytes from a source (an emitter of an ordered byte sequence) and a sink (a receiver of an
ordered byte sequence) that is independent of the protocol being used to undertake the data
transfer.

To provide such a capability, OGSA-DMI defines two port types:

• A port type that defines how to set up a data transfer instance.
• A port type that defines operations for a data transfer instance in order to:

o control its behavior, e.g. “resume” and “suspend”
o return attribute values relating to its internal behavior, e.g. “number of bytes

moved”, “total size of the data moved”.

Figure 1 gives an overview of the functional architecture and depicts the use of particular
communication mechanisms:

• On the far left is an unspecified interaction between a user agent (human) and a client
agent that will undertake the interaction with services that implement the OGSA-DMI port
types.

• In the centre is an OGSA-DMI specific communication (as defined in this document)
between a client and implementations of the Data Transfer Factory (DTF) and Data
Transfer Instance (DTI) port types.

• On the far right of the diagram are the established native data transfer protocols for
controlling and undertaking the data transfer, e.g. FTP[POSTEL], GridFTP[ALLCOCK01],
HTTP[FIELDING], UDT[GU], etc.

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 6

It is important to note that the source and sink services need to ‘get’ and ‘put’ the data and,
although they are shown separately in this diagram, they may be treated as the same functional
entity. They are treated separated in this overview to make it clear that the source and sink can
be addressed individually using a specific data transport protocol or with a specific identity token
when they form part of different virtual organizations.

This architecture allows the DTF & DTI to be remote from the data source and data sink and to
initiate the transfers from a remote location. Such ‘third party transfers’ are not supported by all
protocols. When they are not supported the DTI (or another entity) may act as an intermediary
downloading the bytes from the source and uploading the bytes to the sink. Clearly, protocols
such as GridFTP which support third party transfers would be more effective in these scenarios.

This diagram does not show the interactions between the Client (or User) and the source and
sink resources that are needed to select the data that is to be transferred. It also does not show
the interactions that specify the destination to which the data is to be transferred to, and how the
protocols that can be used to access the source and sink data locations are determined. These
interactions are out of scope for OGSA-DMI even though their outcome is necessary in order to
fully specify the data transfer activity through the information that is embedded within the Data
Endpoint Reference (DEPR).

Figure 1: OGSA-DMI Architecture

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 7

3.1 Topology

It is inevitable that different Grid deployments will support a number of different data transfer
protocols through different service interfaces and that not all nodes in a Grid will support all of the
available protocols.

In an OGSA-DMI enabled Grid, there will be at least one deployed service implementing the
OGSA-DMI Data Transfer Factory port type available. Implementations of this port type will have
been built using a number of transport protocols which will be advertised in the factory’s
‘supported protocols’ attribute. Through this port type a client will be able to initiate a data transfer
activity from a data source to a data sink using the most suitable protocol supported at both the
source and sink locations that can be used to move the data. This data movement will be
supported by data movement services located at the source and sink. A typical Grid deployment
might use existing low-level data movement services, protocols, or mechanisms (e.g. GridFTP,
file access, SRB, etc) that have been defined elsewhere.

3.2 Entities

This section describes the entities that participate in a data transfer. These entities can be natural
(i.e. human beings), or agents. Non-human entities may be implemented through hardware or
software only, or software governing/controlling hardware.

3.2.1 Data Endpoint Reference (DEPR)

A DEPR encapsulates all the information relating to how the data it describes can be accessed (a
source DEPR) and where it is to be placed (a sink DEPR). Thus, a unique DEPR is needed for
each source and sink. The transfer protocols by which these operations can be undertaken are
encapsulated in these endpoint references and are used by the DTF to select the protocol for the
underlying data transfer. Although this version of the specification does not make use of all of the
WS-Addressing Endpoint Reference data structure, it is anticipated that future versions will do so.
This approach keeps the interface stable, and re-tooling is kept at a minimum for both clients and
implementations.

3.2.2 Source

The source of a data transfer contains all the bytes that need to be transferred to a sink. The
internal organization of this data (e.g. a flat file, relational database, distributed across replicas,
striped for performance, etc.) is not exposed to the DMI architecture.

From the viewpoint of the other data transfer entities the source’s primary function is to emit an
ordered byte sequence using one of several possible data transfer protocols.

3.2.3 Sink

The sink of a data transfer will eventually receive all the bytes that are at the source of a data
transfer. Data semantic issues, such as byte ordering, are outside the scope of the DMI
specification but may be supported natively by the data transfer protocol used. As with the
source, the internal organization of the data once it is consumed by the sink is intentionally left
unspecified.

3.2.4 Data Transfer Factory Port Type

The Data Transfer Factory (DTF) port type’s sole role is to set up a data transfer between a data
source and a data sink from a set of parameters supplied by the user.

To set up a data transfer, a DTF communicates with both the source and sink, using the

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 8

information encapsulated in the source and sink DEPRs. The DTF attempts to negotiate a data
transfer protocol and, on success, it sets the protocol specific parameter settings in a manner
consistent with the current parameter set and the configuration of the DTF. The DTF returns an
Endpoint Reference (EPR) to a Data Transfer Instance (DTI) to the client. This EPR can be used
to monitor and control the data transfer through an instance of a Data Transfer Instance (DTI)
port type.

Within a typical Grid deployment, a DTF is a persistent well-known service which is expected to
have a long lifetime, possibly measured in months or years.

3.2.5 Data Transfer Instance Port Type

The operations in a Data Transfer Instance (DTI) port type enable a DTI’s configuration and
current state to be discovered, as well as providing a means to control a data transfer through an
appropriate EPR. To the Data Transfer Client, a DTI acts as a proxy for the underlying data
transfer using the interface defined in this specification. Additional protocol-specific capabilities
and information relating to a data transfer MAY be provided if this does not alter the semantics
and operation defined in this specification.

Clients of a DTI may poll for information about its status, or apply management and control
operations as described below by using the given EPR.

The EPR is used for one and only one data transfer and is therefore fairly short-lived compared to
an EPR to a DTF. When the underlying data transfer has finished, the state corresponding to the
EPR that is accessed through the DTI will be destroyed.

However, this destruction of state is not performed automatically after the last byte of the data
has been transferred and successfully stored at the sink or if the data transfer fails for some
unexpected reason. The DTI configuration allows this state to exist past the last transferred byte
until the user has confirmed that it no longer needs access to this state as the data transfer is
complete. In addition, the actor requesting the transfer may also specify a duration for the state
information to be retained (Section 4.2.1.3 - the [stay alive time]).These leads to three scenarios:

• No [stay alive time] specified: State data is kept for an implementation specific duration.
• Sensible [stay alive time] specified: State data is kept for the requested duration.
• Unreasonable [stay alive time] specified: State data cannot be expected to be persisted

for ‘all’ time and after an implementation specific duration it will be destroyed.
Therefore, implementations MAY enforce a policy of a maximum extended lifetime for this state
(so that DTIs do not need to store this state indefinitely).

3.2.6 Data Transfer Client

A Data Transfer Client contacts a DTF to set up and configure a data transfer. It will receive a
handle to a DTI, which it can use to query for the transfer’s status and other relevant information.

The Client may invoke control and management operations, such as “Stop”, “Start”, “Suspend”,
“Resume”, “State”, etc. as available and applicable on the service, see Section 5.2.

A Data Transfer Client is not always the same entity as a Data Transfer User. Rather, the Data
Transfer Client might be a software agent located at a remote execution management system
that executes parts of a larger workflow that require data transfers on behalf of the Data Transfer
User. It could also be a web based portal that lets the user manually set up and invoke data
transfers.

3.2.7 Data Transfer User

A Data Transfer User is the only human actor in the Data Transfer Architecture. The identity of

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 9

the Data Transfer User is immutable. The identity of the Data Transfer User may have important
security implications (see the Security section later on in this document).

3.3 Using the DEPRs

The DMI model is able to encompass three distinct use cases through the defined port-types and
DEPR structure. In the following scenarios ‘data’ encompass structured data and data with no
particular structure contained within a file. These use cases are driven by a practical realization
that initially data services that provide information on data location and access will not be able to
provide DEPRs. Until data services are able to map logical data transfer requests to actual
protocols we provide a migration strategy as to how DEPRs can be used with DMI services.

3.3.1 Explicit Data Transfer

In this scenario the client knows the source and destination URLs for the data that is to be moved
and the protocol that is required to undertake the movement. Through a client tool (or by explicitly
constructing the required XML) a DEPR is provided for the source and the sink using the single
URL specifying the real location of the data source and sink. The wsa:Address element in the
DEPR is explicitly marked as http://www.ogf.org/ogsa/2007/08/addressing/none as defined in
Section 4.2.1.2 to indicate that this DEPR is structure complete as it is.

As the source and the sink DEPRs each contain a single protocol element the DTF port type is
able to use the provided protocols and URL to initiate the DTI. As the information has been
explicitly provided the DTF is guaranteed to find a match if the requested protocol is supported by
the DTI implementation.

3.3.2 Defined Data Transfers

In this scenario the client has already been in contact with a data registry or replica catalogue and
has obtained the necessary information required to map their logical source and sink data names
to the protocols by which the data can be accessed. The mechanism used to undertake this
mapping process is not defined. Through a client tool (or by explicitly constructing the required
XML) a DEPR is provided for the source and the sink. The source and sink DEPRs contain the
set of protocols by which the data at the source and sink locations can be accessed. The
wsa:Address element in the DEPR is explicitly marked as
http://www.ogf.org/ogsa/2007/08/addressing/none as defined in Section 4.2.1.2 to indicate
that this DEPR is structure complete as it is.

As the source and the sink DEPRs may each contain multiple protocol elements the DTF port
type is able to use the provided protocols and URLs to select a protocol that is both supported at
the source and sink, and is supported by the DTI implementation to initiate the DTI. It is possible
that no matching protocol will be found within the source and sink DEPRs and a fault will be
generated as discussed in Section 4.

3.3.3 Logical Data Transfers

In this scenario the client is able to provide the logical data names for the source and sink
locations in the DEPR and a resolving service (using the wsa:Address element) that the DTF can
use to retrieve the protocols supported by the data source or sink. Through a client tool (or by
explicitly constructing the required XML) a DEPR is provided for both the source and the sink
containing this information and these are passed to the DTF port type.

The DTF port type is not able to select and initiate a data transfer at this point as it has no
information on the available protocols. By using the wsa:Address element contained in the source
and the sink DEPR the DTF is able to contact a separate service that is able to provide the
mapping between the logical data name and the protocols and URLs by which the data can be

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 10

accessed. This information, effectively the ‘DataLocations’ element in the DEPR, may be returned
by annotation of the DEPR passed to a ‘mapping’ port type or by explicitly returning the
‘DataLocations’ element in the return message body. No statement is made by this document as
to the normative definition of the ‘mapping’ port type.

4. Data Transfer Factory Port Type

This section defines the operations of the Data Transfer Factory (DTF) port type and its attributes.
The purpose of the DTF is to set up a data transfer between a source and a sink.

The DTF provides a set of properties describing the current configuration of the Factory. The set
of properties MUST minimally include the compulsory attributes defined in this specification. It
MAY support the optional attributes defined in this specification, and using the defined
extensibility mechanisms any implementation specific attributes. These attributes are defined in
the following properties section.

The factory has a single operation that requests a data movement activity,
“GetDataTransferInstance”. Parameters given in invoking this operation define the requirements
specified by the client for the data transfer activity. If creating the data transfer activity succeeds,
then the DTF MUST create and return an EPR to a DTI back to the client. If creating the data
transfer fails then the DTF MUST throw a fault and no EPR to a DTI is created. Details to the fault
condition MAY be given in the fault data structure. The abstract interface definition is as follows:

Data Transfer Factory

[supported protocol]+

[service instance] GetDataTransferInstance([source DEPR], [sink DEPR],
 [transfer requirements]);
[factory attributes] GetFactoryAttributesDocument()

Figure 2: Functional Data Transfer Factory Interface

The details of the DTF are described in below.

4.1 Properties

A Data Transfer Factory exports the following read-only properties that describe its configuration
and capabilities.

4.1.1 [supported protocol]

Each [supported protocol] information element identifies a particular data transfer protocol that is
recognized by the DTF (and any generated DTI) and can potentially be used to initiate a data
transfer from a source or a sink. If a protocol specified within a DEPR is not listed as a supported
protocol by the DTF then it will not be considered as an option when trying to find a matching
protocol between those supported at the data source and sink, and the DMI implementation.
Multiple [supported protocol] elements may be specified. A [supported protocol] element indicates
which protocols this factory knows about. Each protocol will be characterized by one of several
specific undo strategies as described below. There cannot be a default [undo strategy] for a DTF
and any created DTI. If a DTF supports more than one data transfer protocol then it must provide
an instance of [supported protocol] for each transfer protocol that it supports.

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 11

For the purpose of this specification, the following URIs identify the described data transfer
protocol and are intended for use as values within the [supported protocol] information elements.

If an implementation supports one of the following data transfer protocols it MUST use one of the
corresponding identifiers to identify it.

http://www.ogf.org/ogsa-dmi/2006/03/im/protocol/gridftp-v20

This identifier describes the GridFTP as specified in [ALLCOCK01].

http://www.ogf.org/ogsa-dmi/2006/03/im/protocol/http/v11

This describes the HTTP/1.1 as specified in [FIELDING].

http://www.ogf.org/ogsa-dmi/2006/03/im/protocol/ftp

This describes the FTP as specified in [POSTEL].

http://www.ogf.org/ogsa-dmi/2006/03/im/protocol/ftp-passive

This describes the “Passive Mode” for FTP when a sink only supports passive FTP
transfers, e.g. because of firewall restrictions, as described in [POSTEL].

Implementations may choose to recognize other protocols identifiers.

4.1.1.1 [undo strategy]

If a data transfer being undertaken by a DTI should fail, then a DTI may have recovery options
described in the [undo strategy] information element depending on the capabilities of the
underlying data transfer protocol being used. The success or failure of the DTI in removing
artifacts generated through the data transfer is described in the DTI’s Failed state.

The data type of the [undo strategy] information element is a URI. When an [undo strategy] is
invoked, its resultant state {clean, unclean or unknown} MUST be reflected in the DTI’s ‘Failed’
state.

An implementation MUST describe the undo strategy that it supports for each supported protocol
using one of the following identifiers. In declaring its support for such an undo strategy it MUST
follow the declared semantics of the undo strategy, namely:

http://www.ogf.org/ogsa-dmi/2006/03/im/undo/full

The data transfer protocol guarantees a complete and verifiable cleanup, which ensures
that:
• Any data transferred to the sink is removed from the sink;
• Any temporary data generated at the sink or the source are removed;
• Any remaining space reservations done at the sink are removed;
• Any remaining bandwidth reservations are undone;
By declaring such guarantee a failed data transfer, after the undo has been applied MUST
advance to the state :Failed:Clean”. Conversely, it MUST NOT assume either
“Fauled:Unknown” or “Failed:Unclean”.

 http://www.ogf.org/ogsa-dmi/2006/03/im/retry/best-effort

A best effort indicates that a full undo is attempted, as described earlier, but the outcome of
this effort cannot be guaranteed or verified. An OGSA-DMI implementation MAY provide
additional information about the best-effort undo activity such as which of the undo efforts
succeeded or failed.
Depending on the outcome of the undo operation the resultant state MAY be either of the
“Failed:{Clean, Unclean, Unknown}” states. The underlying undo operations, if invoked,
may be able to completely tidy up the system with no traces left behind. In such case the
resultant state SHOULD be “Failed:Clean”. If the underlying undo operations are known to

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 12

not tidy up completely, then the resultant state SHOULD be “Failed:Unclean”. However, if it
cannot be safely determined whether one or more undo operations were successful, the
resultant state SHOULD be “Failed:Unknown”.

http://www.ogf.org/ogsa-dmi/2006/03/im/retry/none

The protocol does not guarantee to undo any of the changes caused at the entities
participating in the data transfer (e.g. releasing reserved resources, removing the partial
data transferred at the storage space, etc.).
In case the underlying data transfer fails the resultant state MUST be “Failed:Unclean”.

Clients MAY take the appropriate actions to perform any clean up on their own, which is out of
scope for this specification.

4.1.1.2 XML Representation

The [supported protocol] information element is rendered in XML as:

<dmi:SupportedProtocol name=”xs:anyURI”>

 <dmi:UndoStrategy name=”xs:anyURI”/>

</dmi:SupportedProtocol>

Where:

/dmi:SupportedProtocol

Represents the [supported protocol] information element. Its XML type is defined as
xs:anyURI.

/dmi:UndoStrategy
Represents the [undo strategy] information element. Its XML type is defined as xs:anyURI.

4.2 Operations

A DTF defines two operations: one that requests a data transfer and another to retrieve
information relating to its configuration.

4.2.1 GetDataTransferInstance

This operation is used to create a DTI in response to a request for a specific data transfer to take
place with specific constraints.

Invoking this operation will, on success, create an EPR to a DTI that is then returned by this
operation. The DTI encapsulates access to the underlying data transfer.

To create an EPR to the DTI, a DTF MUST perform some matching between the protocols that
are supported by both the source and sink (captured within the DEPRs [available protocols]
element, and the protocols supported by the DTI which are captured in the [supported protocols]
attribute of the DTF. A simple implementation of the OGSA-DMI specification may decide that if
no common protocol exists between the source, the sink and the DTI then a data transfer is not
possible. A more sophisticated implementation may explore the use of intermediaries to find a
transfer mechanism. If no data transfer is possible then the operation MUST exit with a
NoSourceSinkProtocolMatchFault (See 4.3.2). The particular fault returned MAY provide further
information about the fault condition.

The following information elements further describe the parameters used in the
“GetDataTransferInstance” operation.

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 13

4.2.1.1 [service instance]

A [service instance] information element describes a WS-Addressing Endpoint Reference (EPR)
to a DTI. This EPR is minted by a DTF during the “GetDataTransferInstance” operation and is
sent back to the client of the DTF. The instantiation of an EPR for that DTI indicates that the
setting up of a native data transfer was successful and that it has been encapsulated in the DTI.

Once the Client receives the EPR, its communication with the DTF is complete for the current
data transfer, and all future communication by the client for this data transfer MUST be conducted
via the DTI using the EPR returned.

4.2.1.1.1 XML Representation

When rendered in XML, the [service instance] information element is described as follows:

<dmi:ServiceInstance> wsa:EndpointReferenceType </dmi:ServiceInstance>

The following describes the attributes and elements in the Pseudo Schema given above:

/dmi:ServiceInstance

This represents the [service instance] information element. Its XML type is defined as
wsa:EndpointReferenceType.

4.2.1.2 [source DEPR] or [sink DEPR]

The [source DEPR] information element describes the source of a data transfer and has the type
of a Data Endpoint Reference (DEPR). The [sink DEPR] information element describes the sink
of a data transfer and has the type of a DEPR. Although both the source and sink DEPRs have
the same type they are semantically very different.

The DEPR that is used as either the sink or source is obtained in a manner that is out of bands
for this specification. The DTF client passes these DEPRs to the DTF A DEPR may be minted by
a Web Service that has knowledge of the data store and the protocols by which it can be
accessed. This Web Service may be identical to the one that handles and manages the actual
data represented by the DEPR. The DEPR is of type wsa:EndpointReferenceType and MUST
NOT be null.

The Web Service that mints and issues the DEPR element MUST provide at least one protocol
contained within a [data] element describing how the data represented by the DEPR must be
accessed. If more than one [data] element is specified each element MUST contain a different
protocol. The [data] elements are wrapped in the container element [data locations]. The [data
locations] element MUST be present in the [metadata] section of the DEPR.

In effect, the [data EPR] element (introduced conceptually in Section 3.2.1) defines a profile in the
[metadata] section of a generic WS-Addressing EndpointReferenceType. However, this does not
prevent the Web Service that mints the [data EPR] element from adding other metadata using the
described extensibility mechanism, which is out of scope for this specification.

In addition, a [data EPR] may be used to represent data aggregates such as a collection of files.
How this is represented within the [data EPR] is out of scope for this document. Nevertheless,
this abstraction allows a DTI to represents the bulk transfer of data aggregates between a source
and sink. In practice, if one were using GridFTP, the transfer of a directory with its associated
content could be achieved by adding a "/" at the end of the URL representing the data within the
[data EPR]. Aggregation thus becomes an implementation detail but it is nevertheless possible
within the context of the present DTI specification.

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 14

For example, a DataEPR that describes that the directory “/name/of/the/dir/” including its contents
may be transferred using GridFTP 2.0 or SRM may look like this:

<dmi:DataEPR>

 <wsa:Address>

 http://www.ogf.org/ogsa/2007/08/addressing/none

 </wsa:Address>

 <wsa:Metadata>

 <dmi:DataLocations>

 <dmi:Data

 ProtocolUri="http://www.ogf.org/ogsa-

dmi/2006/03/im/protocol/gridftp-v20"

 DataUrl="gsiftp://example.org/name/of/the/dir/">

 </dmi:Data>

 <dmi:Data

 ProtocolUri="urn:my-project:srm"

 DataUrl="srm://example.org/name/of/the/dir/">

 </dmi:Data>

 </dmi:DataLocations>

 </wsa:Metadata>

</dmi:DataEPR>

Note the difference in the declaration of the protocol: This version of the specification does not
define a normative URI for the SRM protocol hence a project specific identifier for the SRM
protocol.

4.2.1.2.1 XML Representation

When rendered in XML, the [source DEPR], or [sink DEPR], element will be described as follows:

<dmi:DataEPR>

 <wsa:Address/>

 <wsa:ReferenceParameters/>?

 <wsa:Metadata>

 <xs:any/>*

 <dmi:DataLocations>

 <dmi:Data ProtocolUri=”xs:anyURI” DataUrl=”xs:anyURI”>+

 <dmi:Credentials>?

 <xs:any namespace=”##other”/>+

 </dmi:Credentials>

 </dmi:Data>

 </dmi:DataLocations>

 </wsa:Metadata>

</dmi:DataEPR>

The following describes the attributes and elements in the Pseudo Schema given above:

/dmi:DataEPR

This represents the [source], or [sink], information element. Its XML type is defined as
wsa:EndpointReferenceType.

/dmi:DataEPR/wsa:Address

This represents the [address] element.
If this DataEPR is intended to be used as a container element for a dmi:AvailableProtocols
element only, and not as a genuine WS-Addressing EndpointReferene that points to a live

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 15

Web Service, then the wsa:Address element MUST have the value:
“http://www.ogf.org/ogsa/2007/08/addressing/none”

/dmi:DataEPR/tns:ReferenceParameters

This represents the WS-Addressing [reference parameters] element.

/dmi:DataEPR/wsa:Metadata

This represents the WS-Addressing [metadata] element.

/dmi:DataEPR/wsa:Metadata/xs:any

This represents the extensibility point for further information about the data as defined in
WS-Addressing.

/dmi:DataEPR/wsa:Metadata/dmi:DataLocations

This represents the [DataLocations] element. This element serves as a container element
for all data transfer protocols that can be used to access the data addressed by the parent
dmi:DataEPR element.

/dmi:DataEPR/wsa:Metadata/dmi:DataLocations/dmi:Data
The [data] element describes the protocol Uri and protocol specific information by which
the data can be retrieved or stored.

/dmi:DataEPR/wsa:Metadata/dmi:DataLocations/dmi:Data/@dmi:ProtocolUri
The ProtocolUri attribute contains the normative identifier for the described protocol.
Section 4.1.1 defines normative identifiers for particular data transfer protocols. These
MUST be used to identify the supported data transfer protocol.
As an extensibility option, the name attribute MAY contain identifiers for data transfer
protocols that are not normatively referenced in this specification. An implementation MAY
ignore any [data] elements with such an attribute.

/dmi:DataEPR/wsa:Metadata/dmi:DataLocations/dmi:Data/@dmi:DataUrl

The DataUrl attribute contains data transfer protocol specific access information. If the DTF
selects the data transfer protocol that is identified by the value of the sibling
dmi:ProtocolUri attribute, then the DTI MUST use the information provided in the
dmi:DataUrl attribute to access the data.

/dmi:DataEPR/wsa:Metadata/dmi:DataLocations/dmi:Data/dmi:Credentials

This OPTIONAL element contains one or more credentials that can be used to request
access to the specified data URL, e.g. a Serialized X509 GSI proxy, a username &
password, SecureID one time password challenges, etc.
The credentials are initially inserted by the service generating the DEPR (if it is generated)
using the credential that the user used to identify themselves to that service, in a process
that is out of scope for DMI. Those credentials MAY require that the DMI User or DMI
Client add elements to the dmi:Credentials section, e.g. the response to a SecureID
challenge. Entities that create or augment the dmi:Credentials element SHOULD use
digital cryptography technology to protect and ensure confidentiality, authenticity and
validity of the contained credentials. For scenarios that allow more than one entity to
augment the dmi:Credentials section it is RECOMMENDED that the individual child
elements are digitally signed, instead of the dmi:Credentials element itself.
The credential do not need to be the user’s credential but could instead be a specific
credential that could only be used once to gain access anonymously to the specified data
URL.

/dmi:DataEPR/wsa:Metadata/dmi:DataLocations/dmi:Data /dmi:Credentials/xs:any

This extensibility point describes any security information that is required to enable the
Source or Sink to properly authenticate and authorize the requested Data Transfer. The

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 16

format of such data must conform to the security framework employed in the current Grid
infrastructure.

4.2.1.3 [transfer requirements]

A [transfer requirements] information element describes various constraints on the data transfer
request.

The data type of the [transfer requirements] element is complex, i.e. it does not define or allow
content other than child information elements.

This element is optional when requesting a data transfer. When present, the DTF MUST use
these values to drive the selection of the underlying protocols and services. If not specified then
the DTF will use the default values.

4.2.1.3.1 XML Representation

When rendered in XML, the [transfer options] information element is described as follows:

<dmi:TransferRequirements>

 <dmi:StartNotBefore/>?

 <dmi:EndNoLaterThan xsi:nillable=true />

 <dmi:StayAliveTime/>?

 <dmi:MaxAttempts />?

 <xs:any namespace="##other"/>*

</dmi:TransferRequirements>

The following describes the attributes and elements in the Pseudo Schema given above:

/dmi:TransferRequirements

This represents the [transfer requirements] information element. Its XML type is defined as
xs:complexType.

/dmi:TransferRequirements/dmi:StartNotBefore

This represents the [startNotBefore] information element. The data transfer encapsulated
by the DTI MUST NOT start before the date, time and time zone specified by this element.
If not specified its default value will be the date and time that the DTI was created. The DTI
MUST NOT enter the transferring state before this time unless the “Start” operation on the
DTI is invoked.

/dmi:TransferRequirements/dmi:EndNoLaterThan

This represents the [endNoLaterThan] information element. The value MUST specify a
date and time greater than or equal to the value of the [startNotBefore] element. The
default value that will be used by the DTI will be null indicating that there is no date and
time by which the data transfer must complete by.

If a value is specified for this element and the DTI has not reached the “Done” state by the
time the specified date and time is reached, then the DTI will be deemed to have failed and
MUST enter the “Failed” state. The DTI MUST attempt to halt the underlying data transfer
using the selected protocol. Other mechanisms MAY be used by the DTI to halt the data
transfer.

If the [undo] element exists then the results of the partial transfer at the sink MUST be
removed so the DTI can enter the appropriate cleanup related state, i.e. clean, unclean,
unknown.

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 17

/dmi:TransferRequirements/dmi:StayAliveTime
This represents the [stay alive time] information element. It is used to specify the minimum
time, once the DTI has entered the “Done” state that the DTI will be maintained before it is
automatically cleaned up. If this element is not specified then there will be no automatic
cleanup. A value of zero indicates that the DTI will be automatically destroyed, once it has
entered the “Done” state, at the discretion of the implementation: The client MUST NOT
expect its existence after the “Done” state has been reached.
A DMI implementation MAY enforce a policy of a maximum stay alive time. The details of
such a situation arising are out of scope of this specification, but they MAY change the
semantics of this value. If this is the case the DMI implementation MUST communicate the
enactment of such policy using means that are out of scope of this specification.

/dmi:TransferRequirements/dmi:MaxAttempts

This represents the [MaxAttempts] information element. It is used to specify the number of
times a data movement operation (transfer) is made to move the data before a DTI enters
the “Failed” state. A DMI implementation MUST have a default value of 1 for the
MaxAttempts in case of a failure. If the [endNoLaterThan] is reached before the number of
Attempts has reached [MaxAttempts] then the service MUST NOT continue with the retries
and MUST enter the “Failed” state. When a transfer is failed, the Attempts counter in the
Instance Attributes of a DTI is incremented. When the number of Attempts is equal to
maxAttempts attribute of the /dmi:TransferRequirements then the state is changed to one
of the “Failed” states.

/dmi:TransferRequirements/xs:any

This represents an extensibility element for the [transfer requirements]. DMI Clients MAY
add elements of other namespaces to the [transfer requirements] when requesting a data
transfer. A DTF implementation MUST return an "UnsatisfiableRequestOptionsFault" as
specified in section 4.3.1 if it does not recognize or support the extension elements in the
[transfer requirements] element.

4.2.2 GetFactoryAttributesDocument

This operation is used to retrieve the current configuration of a DTF. Invoking this operation will,
on success, return an XML document containing the current configuration.

The following information elements further describe the return value of the
“GetFactoryAttributesDocument”. The operation has no input parameters.

4.2.2.1 [factory attributes]

The [factory attributes] information element describes the document returned by the
“GetFactoryAttributesDocument” operation.

4.2.2.1.1 XML Representation

When rendered in XML, the [factory attributes] information element is described as follows:

<dmi:FactoryAttributes>

 <dmi:SupportedProtocol name=”xs:anyURI”>*

 <dmi:UndoStrategy name=”xs:anyURI”/>

 </dmi:SupportedProtocol>

 <xs:any namespace=”##other”/>*

</dmi:FactoryAttributes>

The following describes the attributes and elements in the Pseudo Schema given above that have
not already been defined elsewhere in this specification:

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 18

/dmi:FactoryAttributes

This represents the [factory attributes] information element. It is a complex type listing the
protocols supported by the DTF.

4.3 Faults

If the Data Transfer Factory is unable to create a Data Transfer Instance, then it MUST throw a
fault indicating the error condition.

4.3.1 UnsatisfiableRequestOptionsFault

This fault describes the situation when the options, as resolved from [transfer options], do not
allow successful creation of a Data Transfer. A DTF MAY give additional information in the
extensibility element of this fault.

4.3.2 NoSourceSinkProtocolMatchFault

This fault describes the situation when the attempt to find a common data transfer protocol
between the source and sink DEPRs, and a protocol supported by the DMI has failed. A possible
cause may be mismatching [source protocol] entries at the source and [sink protocol] entries at
the sink; or different implementations of the same data transfer protocol that renders an
interoperable use of that transfer protocol impossible.

4.3.3 NoDataLocationsSpecifiedInEprFault
The [sourceDEPR] or [sinkDEPR] while correctly formatted XML do not contain the required
elements in the metadata section to be processed by the DTF.

4.3.4 CustomFault

This fault element MAY be used to describe any other situations that are unrelated to, or specific
to, the implementation of the DTF.

5. Data Transfer Instance Port Type

This section defines the Data Transfer Instance (DTI) port type. The purpose of the DTI port type
is to monitor and control a data transfer between the source and the sink. Users can use an EPR
to a DTI instance to query the status and progress of the underlying data transfer.

The DTI exports a set of properties describing its current state and configuration. The set of
properties is not limited to the attributes defined in this specification. Implementers may choose to
add attributes as necessary. However, the obligatory attributes defined in this document MUST
be supported by any implementation. The abstract interface definition is as follows:

Data Transfer Instance

[start time]
[state]
[completion time]?
[total data size]?
[bytes transferred]?
[attempts]

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 19

Start()
Activate()
Stop()
Resume()
Suspend()
[state] GetState()
[instance attributes] GetInstanceAttributesDocument()

Figure 3: Functional Data Transfer Instance Interface

The details of the Data Transfer Instance are described in the following sections.

5.1 Properties

The Data Transfer Instance exports the following properties. They are all informational properties,
i.e. they can be accessed, but not modified. All properties are dynamic, in the sense that their
respective value may change during the lifetime of the Data Transfer Instance.

5.1.1 [start time]

When the DTI is in the Created state the [start time] information element describes the point in
time and the time zone that the transfer is due to start. When the DTI is not in the Created state
the [start time] information element describes the point in time and time zone that marks the start
of the current attempt for the data transfer, i.e. when the DTI initiates the transfer through the
selected protocol. Implementations MUST support the [start time] attribute.

An implementation of this specification MUST guarantee that the [start time] will be observed. If
the data transfer does not start at the scheduled start time then it MUST enter a FAILED state.

If scheduling information is not present, or available, for the current DTI, then the value of the
[start time] element is null until the transfer attempt starts – by moving into the Scheduled state. In
such circumstances the data transfer MUST be started manually through the ‘Start()’ operation.

The data type of the [start time] element is a composite of a Gregorian calendar date and a time
and time zone on that day.

5.1.1.1 XML Representation

When rendered in XML, the [scheduled start time] information element is described as follows:

<dmi:StartTime xsi:nillable=”true”>

 xs:dateTime

</dmi:StartTime>

The following describes the attributes and elements in the Pseudo Schema given above:

/dmi:StartTime

This represents the [start time] information element. Its XML type is defined as
xs:dateTime. The cardinality of the XML element is 1, i.e. it MUST be present at all times. If
no meaningful value is available, i.e. no time has been specified for the Data Transfer to

start then this MUST be reflected using the attribute and value xsi:nil=”true” as

defined in [THOMPSON].

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 20

5.1.2 [state]

The [state] information element describes information about the state of a DTI at the time when it
is queried for its state. It MUST be supported by all implementations of this port type.

The data type of the [state] information element is complex, i.e. a composition of attributes and
child elements.

5.1.2.1 XML Representation

When rendered in XML, the [state] information element is described as follows:

<dmi:State value=”xs:string”>

 <dmi:Detail>

 xs:any*

 </dmi:Detail>?

</dmi:State>

The following describes the attributes and elements in the Pseudo Schema given above:

/dmi:State

This represents the [state] information element. Its XML type is defined as
xs:complexType.

/dmi:State/@value

This represents the [state value] information element as described further below.

/dmi:State/dmi:Detail

This represents a container for any additional information a DMI implementation MAY want
to provide to its clients. This may include non-normative, non-interoperable pieces of
information, but also normative information elements as defined below, which MUST be
understood by DMI clients.

/dmi:State/dmi:Detail/xs:any

This represents the extensibility point for additional information a DMI implementation may
want to provide to clients.

5.1.3 [state value]

The [state value] information element describes the current state of a DTI, encoded in a character
string.

The data type of the [state value] information element is xs:string. Value comparison MUST be
done character by character.

The following values are defined for the [state value] information element, representing the
possible states as described in section 5.4.

Created

This identifier describes the state “Created” as described in section 5.4.1.1.

Scheduled

This identifier describes the state “Scheduled” as described in section 5.4.1.2.

Transferring

This identifier describes the state “Transferring” as described in section 5.4.1.3.

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 21

Done

This identifier describes the state “Done” as described in section 5.4.1.4.

Suspended

This identifier describes the state “Suspended” as described in section 5.4.1.5.

Failed

This identifier describes the state “Failed” as described in section 5.4.1.6

Failed:Clean

This identifier describes the state “Failed:Clean” as described in section 5.4.1.7.

Failed:Unclean

This identifier describes the state “Failed:Unclean” as described in section 5.4.1.8.

Failed:Unknown

This identifier describes the state “Failed:Unknown” as described in section 5.4.1.9.

5.1.4 [completion time]

The [completion time] information element describes a point in time, while the DTI is not in the
Done or one of the Failed states, that marks the projected time at which the Data Transfer is
expected to finish, i.e. when the underlying transfer protocol has reported completion of the data
transfer. Once the DTI has entered the Done or one of the Failed states the [completion time]
records the time at which it entered that state.

Support for the [completion time] attribute is OPTIONAL for all implementations of this interface.

The [completion time] is only of informative nature. That is, if an implementation supports this
attribute, then the implementation is not obliged whatsoever to guarantee the completion of the
underlying Data Transfer at the given date and time. An implementation MAY change the value of
this attribute at any given time until the Data Transfer is Done or has Failed.

The data type of the [completion time] element is a composite of a Gregorian calendar date and a
time on that day.

5.1.4.1 XML Representation

When rendered in XML, the [estimated completion time] information element is described as
follows:

<dmi:CompletionTime>

 xs:dateTime

</dmi:CompletionTime>

The following describes the attributes and elements in the Pseudo Schema given above:

/dmi:CompletionTime

This represents the [estimated completion time] information element. Its XML type is
defined as xs:dateTime.

5.1.5 [total data size]

The [total data size] information element is an OPTIONAL attribute that records in bytes the total
size of the data transfer that is to be transferred (excluding any overhead from the data transfer

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 22

itself, e.g. control traffic or data retransmission)

5.1.5.1 XML Representation

When rendered in XML, the [total data size] information element is described as follows:

<dmi:TotalDataSize> xs:unsignedLong </dmi:TotalDataSize>

The following describes the attributes and elements in the Pseudo Schema given above:

/dmi:TotalDataSize

This represents the [total data size] information element. Its XML type is defined as
xs:unsignedLong.

5.1.6 [bytes transferred]

The [bytes transferred] information element records how many bytes have been transferred to the
sink as part of the data transfer activity represented by the DTI. Support for the [bytes transferred]
attribute is OPTIONAL for all implementations of this interface. No requirements are imposed on
the underlying data transfer and the implementation as to how frequently this figure should be
updated. It is therefore acceptable for implementations to provide values that are updated at
intervals during the transfer and are therefore implicitly ‘inaccurate’ at times between these
updates.

5.1.6.1 XML Representation

When rendered in XML, the [bytes transferred] information element is described as follows:

<dmi:BytesTransferred> xs:unsignedLong </dmi:BytesTransferred>

The following describes the attributes and elements in the Pseudo Schema given above:

/dmi:BytesTransferred

This represents the [bytes transferred] information element. Its XML type is defined as
xs:unsignedLong.

5.1.7 [attempts]

The [attempts] information element records the number of times a transfer has been attempted.
Therefore, once the DTI enters the Transferring state for the first time this value is set to 1. If the
transfer attempt fails, a new attempt will be made to transfer the data unless the number of
[attempts] equals the value of [max attempts] (default 1) that is set in the TransferRequirements
element when initializing the DTI through the factory operation. Support for the [attempts] is
MUST and should be present all the time.

5.1.7.1 XML Representation

When rendered in XML the [attempts] information element is described as follows:

<dmi:Attempts> xs:unsignedInt </dmi:Attempts>

5.2 Operations

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 23

5.2.1 Start

This operation is used to manually start the data transfer represented by the DTI. The DTI will
move to the “Scheduled” state from the “Created” state on successful completion of this
operation. If the DTI is not in the “Created” state then this operation will generate a fault.

5.2.2 Activate

This operation is used to manually initiate a transfer represented by the DTI that is currently in the
“Scheduled” state to the “Transferring” state on successful completion of this operation. If the DTI
is not in the “Scheduled” state then this operation will generate a fault.

5.2.3 Stop

On invoking this operation the DTI will, if in the “Transferring” or “Suspended” state, move into the
“Failed” state by attempting to stop the underlying data transfer. Depending on the success of
terminating the data transfer the DTI will move into one of the qualifiers – “Clean”, “Unclean” or
“Unknown”. If the DTI is not in the “Transferring” or “Suspended” state then the operation will
generate a fault.

5.2.4 Resume

On invoking this operation the DTI will, if in the “Suspended” state, attempt to move to the
“Transferring” state. If the DTI is not in the “Suspended” state then this operation will generate a
fault.

5.2.5 Suspend

On invoking this operation the DTI will if in the “Transferring” state attempt to move to the
“Suspended” state. If the DTI is not in the “Transferring” state then this operation will generate a
fault.

5.2.6 GetState

This operation returns the current state of the DTI. Invoking this operation will, on success, return
an XML document containing the current state.

The following information element describes the return value of the “GetState” operation. The
operation accepts no input parameters.

5.2.6.1 [state]

The [state] information element describes the document returned by the “GetState” operation.
The XML representation and semantics of this element have been previously defined in Section
5.1.2.

5.2.7 GetInstanceAttributesDocument

This operation returns the current configuration of the DTI. Invoking this operation will, on
success, return an XML document containing the current configuration.

The following information elements further describe the return value of the
“GetInstanceAttributesDocument”. The operation accepts no input parameters.

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 24

5.2.7.1 [instance attributes]

The [instance attributes] information element describes the document returned by the
“GetInstanceAttributesDocument” operation.

5.2.7.1.1 XML Representation

When rendered in XML, the [instance attributes] information element is described as follows:

<dmi:InstanceAttributes>

 <xs:any namespace=”##other”/>+

 <dmi:ScheduledStartTime/>

 <dmi:State/>

 <dmi:EstimatedCompletionTime/>?

 <dmi:TotalDataSize/>?

 <dmi:BytesTransferred/>?

 <dmi:Attempts/>

</dmi:InstanceAttributes>

The following describes the attributes and elements in the Pseudo Schema given above that have
not already been defined elsewhere in this specification:

/dmi:InstanceAttributes

This represents the [instance attributes] information element. It is a complex type
encapsulating XML elements defined elsewhere for the DTI.

5.3 Faults

The state change operations (5.2.1 to 5.2.5) MUST, if an error occurs, throw a fault indicating the
error condition.

5.3.1 IncorrectStateFault

This fault indicates that the DTI is not in the correct state for the requested operation. For
instance, this fault would be generated if the “Start” operation is called and the DTI is not in the
“Created” state.

5.3.2 FailedStateTransitionFault

This fault indicates that, although the DTI was in the correct state to initiate the state transition
operation, the DTI failed to reach the destination state. For instance, this fault would be generated
if the “Suspend” operation was called while in the “Transferring” state but the DTI did not reach
the “Suspended” state.

5.3.3 TransferProtocolNotInstantiatableFault

This fault indicates that the DTI failed to instantiate the underlying data transfer protocol. This
fault type, if occurring, MUST be conveyed in the dmi:Detail element of the dmi:State attribute as
defined in section 5.1.2, and the DTI MUST assume the state “Failed”, and initiate any defined
undo strategy, before entering one of its defined qualified sub-states as defined in sections
5.4.1.7, 5.4.1.8 and 5.4.1.9.

The data type of the TransferProtocolNotInstantiatableFault element is complex, i.e. it does not
define or allow content other than child information elements.

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 25

5.3.3.1 XML Representation

When rendered in XML, the TransferProtocolNotInstantiatableFault is described as follows:

<dmi:TransferProtocolNotInstantiatableFault>

 <Protocol name=”xs:anyURI”/>

 <Timestamp>xs:dateTime</Timestamp>

 <dmi:SourceDataEPR>

 wsa:EndpointReferenceType

 </dmi:SourceDataEPR/>?

 <dmi:SinkDataEPR>

 wsa:EndpointReferenceType

 </dmi:SinkDataEPR/>?

 <xs:any namespace=”##other/>*

</dmi:TransferProtocolNotInstantiatableFault>

The following describes the attributes and elements in the Pseudo Schema given above:

/dmi:TransferProtocolNotInstantiatableFault

This represents the TransferProtocolNotInstantiatableFault. Its XML type is defined as
xs:complexType.

/dmi:TransferProtocolNotInstantiatableFault/Protocol

This MANDATORY element represents information about the underlying data transfer
protocol that could not be instantiated. This XML element is strictly local to the
dmi:TransferProtocolNotInstantiatableFault element and need no further namespace
qualification. Its XML type is defined as xs:complexType.

/dmi:TransferProtocolNotInstantiatableFault/Protocol/@name

This MANDATORY element represents the normative identifier for the underlying data
transfer protocol. Its value MUST be one of the values that the DTF advertises as one of
the supported transfer protocols as defined in section 4.1.1. The value of this field MAY be
one of the normative values as defined in 4.1.1. Its XML type is defined as xs:anyURI.

/dmi:TransferProtocolNotInstantiatableFault/Timestamp

This MANDATORY element represents the date and time when the DTI attempted to
instantiate the underlying data transfer protocol. Its XML type is defined as xs:dateTime. If
the value does not specify a time zone, then the date and time specified MUST be
assumed to be given for the UTC time zone. This element is strictly local to the
dmi:TransferProtocolNotInstantiatableFault element and need no further namespace
qualification.

/dmi:TransferProtocolNotInstantiatableFault/dmi:SourceDataEPR

This OPTIONAL element represents a DataEPR as defined in section 3.2.1. If present, it
constitutes a DataEPR for the Source of the data transfer, amended by the DMI
implementation to reflect the current fault condition, e.g. by having the faulty data transfer
protocol removed from the DataEPR’s dmi:Protocols section. A DMI implementation MAY
provide a dmi:SourceDataEPR for the convenience of its clients. DMI implementations
MUST NOT expect clients to use this information, if provided.

/dmi:TransferProtocolNotInstantiatableFault/dmi:SinkDataEPR

This OPTIONAL element represents a DataEPR as defined in section 3.2.1. If present, it
constitutes a DataEPR for the Sink of the data transfer, amended by the DMI
implementation to reflect the current fault condition, e.g. by having the faulty data transfer
protocol removed from the DataEPR’s dmi:Data section. A DMI implementation MAY
provide a dmi:SinkDataEPR for the convenience of its clients. DMI implementations MUST

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 26

NOT expect clients to use this information, if provided.

/dmi:TransferProtocolNotInstantiatableFault/xs:any

This OPTIONAL element represents the extensibility point for additional information a DMI
implementation may want to provide to clients.

5.3.4 RequestedStateNotSupportedFault

This fault indicates that a state transition has been requested of the DTI that cannot be supported
by the underlying data transfer protocol. The requested state transition does not take place. For
instance, if a “Suspend” operation is called while in the “Transferring” state and the underlying
data transfer protocol could not be suspended, a “RequestedStateNotSupportedFault” would be
generated.

5.4 Lifecycle

The lifecycle of the DTI reflects the overall progress of the underlying data transfer activity,
starting from its creation to its completion. The transition between states can be initiated manually
through the operations described in section 5.2 or may be initiated by the DTI as the transfer
progresses. When the state changes, either manually or automatically, then events are emitted.
The event mechanisms will not be defined in this version of the specification.

Figure 4: DTI state diagram showing "operations()" and "EVENTS"

Figure 4 outlines the DTI states with the allowed transitions, the operations that can manually
initiate state changes, and the events that are generated when these state changes take place.

5.4.1 Lifecycle States

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 27

This section defines the semantics of the states as outlined in Figure 4.

5.4.1.1 Created

The “Created” state describes the configuration of the DTI after it has been created. The DTI will
remain in this state until it reaches the defined ‘ScheduledStartTime’. If the ‘ScheduledStartTime’
element is null then the DTI will immediately move into the ‘Scheduled’ state once it enters the
‘Created’ state.

5.4.1.2 Scheduled

In the “Scheduled” state the DTI is ready to use the underlying data transfer services compliant
with the specified requirements and will, if required, use any previously negotiated resources to
make the data transfer.

5.4.1.3 Transferring

A DTI is in the “Transferring” state if the data transfer, through the underlying protocols specified
when the DTI was created, has been initiated and bytes are starting to be transferred.

5.4.1.4 Done

A DTI reaches the “Done” state (from the “Transferring” state) when the protocol selected to
undertake the data transfer has signaled completion.

5.4.1.5 Suspended

The “Suspended” state indicates that the underlying data transfer has been halted. This may not
be supported by all data transfer protocols in which case the state will not be reached when
triggered by the suspend event generating a FailedStateTransition fault.

5.4.1.6 Failed

The “Failed” state indicates that non-recoverable problems occurred in the underlying data
transfer so that it cannot be completed successfully. This state indicates that the problem has
been detected; the planned [undo strategy] has either not been invoked yet, or has not completed
yet. A DTI may transition to the “Failed” state any time while it is in the “Transferring” or
“Suspended” state.

5.4.1.7 Failed:Clean

The “Failed:Clean” state indicates that non-recoverable problems occurred in the underlying data
transfer and that the planned [undo strategy] has completed successfully by cleaning up any
traces of the failed data transfer attempt. A DTI may transition to the “Failed:Clean” state anytime
while it is in the “Failed” state.

5.4.1.8 Failed:Unclean

The “Failed:Unclean” state indicates that non-recoverable problems occurred in the underlying
data transfer and that the planned [undo strategy] completed but did not clean up all traces of the
failed data transfer attempt. A DTI may transition to the “Failed:Unclean” state anytime while it is
in the “Failed” state.

5.4.1.9 Failed:Unknown

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 28

The “Failed:Unknown” state indicates that non-recoverable problems occurred in the underlying
data transfer and that the planned [undo strategy] completed without being able to assess
whether all, none or some of the traces of the failed data transfer attempt have been cleaned up.
A DTI may transition to the “Failed:Unknown” state anytime while it is in the “Failed” state.

5.4.2 Lifecycle Events

This section describes the lifecycle events that may occur during the lifecycle of a DTI completing
the design of the DTI. In this version of the specification no mechanism is defined how these
events may be delivered to interested clients as this is out of scope for this specification.
Renderings for this specification, e.g. the WS-I rendering or the WSRF rendering, or alternative
project-specific renderings MAY define or compose in event notification mechanisms, such as
WS-Notification [GRAHAM] or WS-Eventing [BOX].

5.4.2.1 Started

The ‘Started’ event is generated when the DTI moves from the “Created” to the “Scheduled” state
either by the “start” operation being invoked or if the time specified in the “ScheduledStartTime” is
reached.

5.4.2.2 Activated

The “Activated” event is generated when the DTI starts the data transfer using the protocol and
service instances (and any resource reservations) selected earlier.

5.4.2.3 Done

The “Done” event is generated when the DTI has completed the data transfer.

5.4.2.4 Suspended

The “Suspended” event is generated when the DTI attempts to move from a “Transferring” state
to a “Suspend” state. This requires that the underlying data transfer protocols are able to halt and
resume the data transfer on demand. If this capability is not available in the underlying protocol,
the DTI will remain in the “Transferring” state. If the capability is available, and is successfully
applied, then the DTI enters the “Suspended” state. If the capability is available and the protocols
fail to halt the transfer then the DTI enters the “Failed” state.

5.4.2.5 Resumed

The “Resumed” event is generated when the DTI attempts to move from the “Suspended” to the
“Transferring” state. If the data transfer fails to be resumed the DTI enters the “Failed” state.

5.4.2.6 Failed

The “Failed” event is generated when the DTI moves to the “Failed” state through some abnormal
termination of the data transfer.

6. Security Considerations

It is of paramount importance that the transfers created and mediated by a DMI protect the data
being transferred from being viewed or modified (i.e. data integrity, privacy and confidentiality) in
unauthorized ways. As of the writing of this document, security considerations in a grid
environment are still under investigation and being defined. Thus this document cannot provide

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 29

security related specifics. Instead, we discuss security related requirements here.

The following are the security related requirements that DMI must meet:

• The credentials required to access a specific data source at the source and a particular
data set at the sink may be different.

• Credentials may be specific to the transfer protocol being used.
• The credentials presented at the source through the selected protocol must authorize the

reading of the data being transferred from the source.
• The credentials presented at the sink, through the selected protocol, must authorize the

storing of the data being transferred to the sink.
• A DMI may be configured to use the capabilities of a data transfer protocol to ensure that

the data cannot be modified while in transit and that it cannot be read by any agent other
than those directly involved in implementing the transfer protocol.

• The sink credentials used to transfer data to the sink must allow the sink to enforce
appropriate access controls on the data once it has been successfully transferred to the
sink.

• The source and sink MUST evaluate the credentials supplied to them through the
selected protocol. The source and sink MUST say “no, not allowed” if the provided
credentials are not understood or if they do not permit the requested transfer.

• DMI must be agnostic to the security infrastructure being used in the environment hosting
DMI.

Some security infrastructures are based upon notions such as user identity and role. DMI must
support these notions if the security infrastructure requires it. We conjecture that the protocol
specific credentials that can be provided at either the source or the sink are sufficient to meet
these needs but this will need to be confirmed until a security infrastructure has been defined.
The DataEPR presented in this specification contains security credentials to access data
resources. As such it contains personal data that should be protected and used only by the
individual whose credentials were used to obtain the DataEPR. The DataEPR should therefore be
stored securely and should not be passed in plain text over unencrypted communication
channels.

The <Credential> element in the DataEPR provides an extensibility point that allows one or more
authentication tokens to be inserted in order to provide access to the data resource. The
supported authentication tokens will be specified through profiles, but would be expected to
include:

• Username/password
• GSI proxy credential
• Activity Credential

7. Author Information

Michel Drescher
Fujitsu Laboratories of Europe, Ltd.
Hayes Park Central, Hayes End Road
Hayes, Middlesex UB4 8FE
United Kingdom

Allen Luniewski
IBM Corp.
555 Bailey Avenue
San Jose, California 95141
United States

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 30

Mario Antonioletti
EPCC
JCMB
The King’s Buildings
Mayfield Road
Edinburgh EH9 3JZ

Steven Newhouse
Microsoft Corporation
One Microsoft Way
Redmond
USA
WA 98053

Ravi Madduri
Globus Project
Argonne National Laboratory
Chicago
USA
IL

8. Acknowledgements

We would like to acknowledge the contributions from James Casey, Bill Allcock, Andrew
Grimshaw, Dave Snelling, Gavin Mccance and Alex Sim during the development of this
specification.

9. Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Copies
of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification can be obtained from the
OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the OGF Executive Director.

10. Disclaimer

This document and the information contained herein is provided on an “As Is” basis and the OGF
disclaims all warranties, express or implied, including but not limited to any warranty that the use
of the information herein will not infringe any rights or any implied warranties of merchantability or
fitness for a particular purpose.

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 31

11. Full Copyright Notice

Copyright (C) Open Grid Forum (2007-2008). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the copyright
notice or references to the OGF or other organizations, except as needed for the purpose of
developing Grid Recommendations in which case the procedures for copyrights defined in the
OGF Document process must be followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its
successors or assignees.

12. References

[ALLCOCK01] Allcock, W., Bester, J., Bresnahan, J., Chervenak, A., Liming, L., and Tuecke, S.
GridFTP: Protocol Extensions to FTP for the Grid. August 2001. http://www-
fp.mcs.anl.gov/dsl/GridFTP-Protocol-RFC-Draft.pdf.

[BIRON] Biron, P. et al. XML Schema Part 2 (Second Edition). October 2004.
http://www.w3.org/TR/xmlschema-2/

[BRADNER1] Bradner, S. Key Words for Use in RFCs to Indicate Requirement Levels, RFC
2119. March 1997.

[BRADNER2] Bradner, S. The Internet Standards Process – Revision 3, RFC 2026. October
1996. http://tools.ietf.org/html/rfc2026,

[BRAY] Bray, T., Hollander, D., Laymann, A., Tobin, R. Namespaces in XML 1.0,
http://www.w3.org/TR/REC-xml-names/. W3C, 16 August 2006.

[BOX] Box, D., Cabrera, L., Critchley, C., et al. Web Services Eventing (WS-Eventing), W3C
Member Submission, March 2006

[CATLETT] Catlett, C. GFD-1: Grid Forum Documents and Recommendations: Process and
Requirements. Lemont, Illinois: Global Grid Forum. April 2002.

[COWAN] Cowan, J. et al. XML Information Set (Second Edition) February 2004.
http://www.w3.org/TR/xml-infoset.

[FIELDING] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P. and Berners-
Lee, T. Hypertext Transfer Protocol -- HTTP/1.1. RFC 2616. June 1999.
http://tools.ietf.org/html/rfc2616.

[GRAHAM] Graham, S., Hull, D., Murray, B., Web Services BaseNotification 1.3. OASIS
Standard. October 2006.

[GU] Gu, Y. and Grossman, R.L.. UDT: UDP-based Data Transfer Protocol. IETF Draft. October
2007. http://www.ietf.org/internet-drafts/draft-gg-udt-02.txt.

[POSTEL] Postel, J. and Reynolds,J. File Transfer Protocol. RFC 959. October 1985.
http://tools.ietf.org/html/rfc959.

[RESCORLA] Rescorla, E. Guidelines for Writing RFC Text on Security Considerations. RFC
3552. July 2003.

[THOMPSON] Thompson, H. et al. XML Schema Part 1: Structures (Second Edition). October
2004. http://www.w3.org/TR/xmlschema-1/

13. Reference XML Schema

This section defines the reference XML Schema for OGSA-DMI core components. All XML

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 32

messages that are involved in OGSA-DMI communications MUST validate against this XML
Schema.

<?xml version="1.0" encoding="UTF-8"?>

<!--

 The OGF takes no position regarding the validity or scope of any

 intellectual property or other rights that might be claimed to

 pertain to the implementation or use of the technology described in

 this document or the extent to which any license under such rights

 might or might not be available; neither does it represent that it

 has made any effort to identify any such rights. Copies of claims

 of rights made available for publication and any assurances of

 licenses to be made available, or the result of an attempt made to

 obtain a general license or permission for the use of such

 proprietary rights by implementers or users of this specification

 can be obtained from the OGF Secretariat.

 The OGF invites any interested party to bring to its attention any

 copyrights, patents or patent applications, or other proprietary

 rights which may cover technology that may be required to practice

 this recommendation. Please address the information to the OGF

 Executive Director.

 This document and the information contained herein is provided on an

 "As Is" basis and the OGF disclaims all warranties, express or

 implied, including but not limited to any warranty that the use of

 the information herein will not infringe any rights or any implied

 warranties of merchantability or fitness for a particular purpose.

 Copyright (C) Open Grid Forum (2007-2008). All Rights Reserved.

 This document and translations of it may be copied and furnished to

 others, and derivative works that comment on or otherwise explain it

 or assist in its implementation may be prepared, copied, published

 and distributed, in whole or in part, without restriction of any

 kind, provided that the above copyright notice and this paragraph are

 included on all such copies and derivative works. However, this

 document itself may not be modified in any way, such as by removing

 the copyright notice or references to the OGF or other organizations,

 except as needed for the purpose of developing Grid Recommendations

 in which case the procedures for copyrights defined in the OGF

 Document process must be followed, or as required to translate it

 into languages other than English.

 The limited permissions granted above are perpetual and will not be

 revoked by the OGF or its successors or assignees.

-->

<schema targetNamespace="http://schemas.ogf.org/dmi/2008/05/dmi"

 xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:dmi="http://schemas.ogf.org/dmi/2008/05/dmi"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 elementFormDefault="qualified">

 <import namespace="http://www.w3.org/2005/08/addressing"

 schemaLocation="http://www.w3.org/2006/03/addressing/ws-addr.xsd"/>

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 33

 <!-- == -->

 <!-- == == -->

 <!-- == Data Model for OGSA DMI == -->

 <!-- == == -->

 <!-- == This XML Schema document defines the common == -->

 <!-- == OGSA-DMI data model used to describe the == -->

 <!-- == normative interfaces for the Data Transfer == -->

 <!-- == Factory (DTF) and the Data Transfer Instance (DTI).== -->

 <!-- == -->

 <!-- == -->

 <!-- == Data Transfer Factory related data model == -->

 <!-- == -->

 <!--

 dmi:UndoStrategy

 -->

 <complexType name="UndoStrategyType">

 <annotation>

 <documentation>

 An undo strategy is executed to clean up traces of a failed

 data transfer attempt. Normative values for the

 dmi:UndoStrategy are defined in the OGSA-DMI Functional

 Specification.

 </documentation>

 </annotation>

 <attribute name="name" type="anyURI" use="required" />

 </complexType>

 <element name="UndoStrategy" type="dmi:UndoStrategyType" />

 <!--

 dmi:SupportedProtocol

 -->

 <complexType name="SupportedProtocolType">

 <annotation>

 <documentation>

 A DTF must advertise which data transfer protocols it supports.

 Normative values for supported protocols are defined in the

 OGSA-DMI Functional Specification. For each supported protocol,

 the DTF must announce which undo strategy will be executed when

 the requested data transfer has failed.

 </documentation>

 </annotation>

 <sequence>

 <element name="UndoStrategy" type="dmi:UndoStrategyType" />

 </sequence>

 <attribute name="name" type="anyURI" use="required" />

 </complexType>

 <element name="SupportedProtocol" type="dmi:SupportedProtocolType" />

 <!--

 dmi:Credentials

 -->

 <complexType name="CredentialsType">

 <annotation>

 <documentation>

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 34

 Credentials in OGSA-DMI are used to describe the security

 related information elements that are necessary to invoke a

 data transfer using a specific transport protocol. This element

 does not define any normative structure so that OGSA-DMI can be

 orthogonally composed with security infrastructures.

 </documentation>

 </annotation>

 <sequence>

 <any namespace="##other" minOccurs="1" maxOccurs="unbounded" />

 </sequence>

 </complexType>

 <element name="Credentials" type="dmi:CredentialsType" />

 <!--

 dmi:Data

 -->

 <complexType name="DataType">

 <annotation>

 <documentation>

 The dmi:Data element describes for each data transfer protocol

 (using the normalised values defined for dmi:SupportedProtocol)

 the specific information that must be used to access the data.

 </documentation>

 </annotation>

 <sequence>

 <element name="Credentials" type="dmi:CredentialsType"

 minOccurs="0" />

 </sequence>

 <attribute name="ProtocolUri" type="anyURI" use="required" />

 <attribute name="DataUrl" type="anyURI" use="required" />

 </complexType>

 <element name="Data" type="dmi:DataType" />

 <!--

 dmi:DataLocations

 -->

 <complexType name="DataLocationType">

 <annotation>

 <documentation>

 This element serves as a container aggregating one or more

 dmi:Data elements. This container item MUST appear in the

 wsa:Metadata section of the SourceDEPR and SinkDEPR as defined

 in the OGSA-DMI Functional Specification 1.0.

 </documentation>

 </annotation>

 <sequence>

 <element name="Data" type="dmi:DataType" maxOccurs="unbounded" />

 </sequence>

 </complexType>

 <element name="DataLocation" type="dmi:DataLocationType" />

 <!--

 dmi:TransferRequirements

 -->

 <complexType name="TransferRequirementsType">

 <annotation>

 <documentation>

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 35

 A client may specify a number of constraints to the data

 transfer such as start and end time (e.g. when resource

 reservations have been made).

 </documentation>

 </annotation>

 <sequence>

 <element name="StartNotBefore" type="dateTime" minOccurs="0" />

 <element name="EndNoLaterThan" type="dateTime" minOccurs="0"

 xsi:nillable="true" />

 <element name="StayAliveTime" type="unsignedInt" minOccurs="0" />

 <element name="MaxAttempts" type="unsignedInt" minOccurs="0" />

 <any namespace="##other" minOccurs="0" maxOccurs="unbounded" />

 </sequence>

 </complexType>

 <element name="TransferRequirements"

 type="dmi:TransferRequirementsType" />

 <!-- === -->

 <!-- == Data Transfer Instance related data model == -->

 <!-- === -->

 <!--

 dmi:StartTime

 -->

 <element name="StartTime" type="dateTime" xsi:nillable="true">

 <annotation>

 <documentation>

 The start time describes the point in time when an instantiated

 data transfer is due to start moving bytes over the wire.

 </documentation>

 </annotation>

 </element>

 <!--

 dmi:Detail

 -->

 <complexType name="DetailType">

 <annotation>

 <documentation>

 The StateDetail is an extension element that an implementation

 may use to provide proprietary information.

 </documentation>

 </annotation>

 <sequence>

 <any namespace="##other" minOccurs="0" maxOccurs="unbounded" />

 </sequence>

 </complexType>

 <element name="Detail" type="dmi:DetailType" />

 <!--

 dmi:StatusValue

 -->

 <simpleType name="StatusValue">

 <annotation>

 <documentation>

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 36

 This enumeration lists all possible values for the

 dmi:Status/@value attribute.

 </documentation>

 </annotation>

 <restriction base="string">

 <enumeration value="Created" />

 <enumeration value="Scheduled" />

 <enumeration value="Transferring" />

 <enumeration value="Done" />

 <enumeration value="Suspended" />

 <enumeration value="Failed" />

 <enumeration value="Failed:Clean" />

 <enumeration value="Failed:Unclean" />

 <enumeration value="Failed:Unknown" />

 </restriction>

 </simpleType>

 <!--

 dmi:State

 -->

 <complexType name="StateType">

 <annotation>

 <documentation>

 The status describes the current configuration of the Data

 Transfer Instance within its lifetime.

 </documentation>

 </annotation>

 <sequence>

 <element name="Detail" type="dmi:DetailType" minOccurs="0" />

 </sequence>

 <attribute name="value" type="dmi:StatusValue" />

 </complexType>

 <element name="State" type="dmi:StateType" />

 <!--

 dmi: CompletionTime

 -->

 <element name="CompletionTime" type="dateTime">

 <annotation>

 <documentation>

 The completion time gives the point in time when the underling

 data transfer is estimated to complete or has completed. The

 value of this element is expected to be highly volatile, and

 does not offer any level of guarantee of accuracy.

 </documentation>

 </annotation>

 </element>

 <!--

 dmi:TotalDataSize

 -->

 <element name="TotalDataSize" type="unsignedLong">

 <annotation>

 <documentation>

 This element defines the total number of bytes that the

 underlying data transfer will send over the wire in order to

 complete the data transfer.

GWD-R-P.134 27 May 2008

ogsa-dmi-wg@ogf.org 37

 </documentation>

 </annotation>

 </element>

 <!--

 dmi:BytesTransferred

 -->

 <element name="BytesTransferred" type="unsignedLong">

 <annotation>

 <documentation>

 This element defines the number of bytes transferred at the

 time of request for this element. No guarantee of accuracy is

 given for the value; as it is - if supported - highly dependent

 on the underlying data transfer protocol.

 </documentation>

 </annotation>

 </element>

 <!--

 dmi:Attempts

 -->

 <element name="Attempts" type="unsignedInt">

 <annotation>

 <documentation>

 This element contains the number of attempts (including the

 current one, if th e state is "Transferring") for the requested

 data transfer. If the data transfer is scheduled to commence in

 the future, this element must have the value of "0".

 </documentation>

 </annotation>

 </element>

</schema>

