Open Science Grid Virtual Organizations
Ruth Pordes, Fermilab
Open Science Grid
July 18th 2011

thanks to Dan Fraser and Chander Sehgal for the diagrams

Introduction to OSG

National Cyber Infrastructure of >18 communities, >80 sites. Open to all science, research, educators, campuses, laboratories.

Project funded by DOE and NSF. Satellite projects contribute new software, services, users etc.

Service Provider to the new XD XSEDE project.

Member of MAGIC,
Partner with EGI,
Work closely with ESNET & Internet2
“on the periphery” of OGF

www.opensciencegrid.org

OSG Sites Today
(available, scheduled downtime, unavailable)
OSG Scope: a Fabric of Services for Communities

Communities...
(LHC, LIGO, SBGrid, Campuses...)

... have users, application developers, site administrators, researchers, students etc:

... may use custom services in addition to OSG's:

... may provide diverse resources via one or more autonomous sites:

<table>
<thead>
<tr>
<th>Compute Interface</th>
<th>Storage Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Fabric</td>
<td>System Status Accounting Security</td>
</tr>
</tbody>
</table>

There is a sharing of software, operational services, and knowledge between the communities and OSG in each of these areas.

OSG

Consultation Services:
- Community
- Security
- Architecture
- Education/Training

Operational Services:
- Front-line support
- Security
- Info/monitoring
- WLCG Interaction
- IT Services

Software Services
- Software Distribution
- Software Evaluations
- Support
Communities aka Virtual Organizations are a core concept and the principles surrounding them help us design and organize our current and future roadmaps.
A Virtual Organization in the OSG is a group that shares at least one or more things including:

- People and organizations with common goal and definition
- Tangibles such as clusters, disk areas, tapes, that are owned/leased/allocated to the group
- Services such as databases, data management, job management, that the group provides and/or uses
- Intangibles such as support, communication etc.
Groups

Can be a loose coupling – small amount of sharing/overlap - or a tight coupling – whole group working on “one thing”

Examples:

Campus VO – common administrative organization; often includes independent clusters, diverse applications, mix of research, science and education, single PI to small groups.

Physics experiment – one detector, one production application, common analysis, centralized management of publishing results.
Sharing Resources and Services

Sharing Expertise and Knowledge gained

“Organic” Training and Education
E.g. http://derekweitzel.blogspot.com/

Recipe for Successful VO

Community Users:
- Adapt their computational work.
- Get Science Done.
- Share successes internally.

Infrastructure
- VOMS
- Submit Host Etc.

Effective & Vibrant VO

OSG User Support
- Helps researchers adapt their applications to use the distributed services;
- Helps community members share the value in the community;
- Helps setup the VO machinery.
Science VOs on the OSG

- Astrophysics
- Biochemistry
- Bioinformatics
- Earthquake Engineering
- Genetics
- Gravitational-wave physics
- Mathematics
- Nanotechnology
- Nuclear and particle physics

> 1.4M hours / day

Virtual Organizations, July 18th 2011
Multi-Disciplinary VOs in OSG, examples

<table>
<thead>
<tr>
<th>VO Name</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engage</td>
<td>Small groups of new entrants. Sharing is of the services offered by the support group. Sub-VOs differentiate between the disciplines.</td>
</tr>
<tr>
<td>FermiGrid</td>
<td>Automatically includes all users registered locally on the campus; All members of the organization automatically have access to the computing resources.</td>
</tr>
<tr>
<td>Grid Laboratory Of Wisconsin</td>
<td>Campus at University of Wisconsin Madison. Shared purchasing for cost efficiencies; Foster culture of sharing across faculties; Retain local administration and control; Access to central support, expertise, and software.</td>
</tr>
<tr>
<td>Holland Computing Center</td>
<td>Common services to access clusters on several campuses of the University of Nebraska system; Central administration and purchasing for cost and expertise efficiencies; On the ground teaching/inclusion of new entrants and students.</td>
</tr>
<tr>
<td>Purdue</td>
<td>Integration of diverse clusters and participation in multiple CIs</td>
</tr>
<tr>
<td>GridUNESP</td>
<td>Federated grid in Brazil – “clone” of OSG sharing OSG services while building & gaining experience in own local national infrastructure.</td>
</tr>
<tr>
<td>OSGEDU</td>
<td>For students and educators learning how to use the services.</td>
</tr>
</tbody>
</table>
VOs in OSG

Registration in the group – knowing the complete set of people and stuff

Administration of policies, procedures, priorities, authorization groups: can be from simple to complex.

Services abide by VO and policy attributes and rules.

Conceptually Sub-VOs inherit from VO.

The VO Management Service provides definition and then real time checking of membership, roles and authorizations. These attributes are then transmitted with the users credential.
Services that Support VO Attributes

Job Execution at a resource:

VO and Attributes used to map to different job queues (priorities).

Data access:

Data management callouts (e.g. SRM, GridFTP servers) that support VO and Attribute mapping to different UIDs.
Works across Diverse Resources

CPU and data accessed through standard grid interfaces.

Translation services map from local campus infrastructures (using local authorization/identification services) to OSG environment.

Overlay job management services enable the reach into the Cloud, maintaining the VO management at the overlay level.
OSG resource owners retain local control and allow/enable use of available resources (no allocation scheme).

“Allocation” schemes currently by manual agreement (will be extended as part of XSEDE SP).

Commercial clouds need actual $. Don’t yet understand if OSG acts a a broker or VO purchases for themselves (adds to the resources they own).