Multifaceted Resource Management for Dealing with Heterogeneous Workloads in Virtualized Data Centers

Íñigo Goiri, J. Oriol Fitó, Ferran Julià, **Ramón Nou**, Josep Ll. Berral, Jordi Guitart and Jordi Torres

Barcelona Supercomputing Center (BSC) and UPC Barcelona Tech.

- Provider benefit depends on
 - Reducing energy consumption
 - Avoid violating SLAs
- Virtualization is used to
 - Consolidate different tasks in the same physical host
 - Save energy and reduce management complexity
- Execute heterogeneous tasks on top
 - HPC tasks based on deadline
 - Web-based applications based on response times and uptime

- Virtualization adds overheads
 - Creation time
 - Migration
 - Disk management
- Aggressive consolidation for saving energy
 - May incur in performance loss, i.e. less benefit
- SLA violation \rightarrow provider pays penalty
 - Delay finish time of HPC tasks
 - High response time of Web applications

We propose a new scheduling policy

- Increases provider benefit
- Reduces energy consumption
- Manages virtualization overheads
- Reduces SLA violations
- Allows outsourcing of resources
- Supports fault tolerance
- Runs HPC and web-based applications

Scheduling algorithm

- Decides where to run a VM dynamically
 - Evaluates every VM allocation in every host (physical server)
- Calculates benefit for each allocation
 - Aggregation of revenues and costs
 - Higher benefit is better
- Finds VM scheduling with higher benefit

Calculate benefit

- Benefit of a tentative allocation of virtual machine VM in host H
- Aggregation of revenues and costs
 - Execution revenue
 - Virtualization overhead
 - Energy cost
- Benefit = Revenue $\sum Costs$

Cost calculation: Hardware, software, and resource requirements

- If the host cannot fulfill the VM requirements:
 - Lacks required hardware: number of CPUs, disk...
 - Lacks required software
 - Lacks required hypervisor
 - $\infty \cos t$
- If the host does not have enough free resources:
 - Not enough CPU, memory...
 - $\infty \cos t$

Cost calculation: Virtualization overhead

Overhead introduced by virtualization management

- Time to create the VM
- Time to migrate the VM
- Estimate SLA penalty
 - Extra time added to HPC tasks
 - Loss of performance

Economic-based scheduling

Cost calculation: Energy consumption

Estimate energy consumption

- Get host load
- Get hosts energy consumption
- Assess consumption per each VM
- Transform it to cost using electricity price

Other features

- Virtualized datacenters provides new capabilities
 - Outsourcing
 - Checkpointing
- Our scheduling policy supports them

- Run VMs (resources) in external laaS providers
- Model an external provider as a big local host
 - Revenue of executing the task
 - Cost to outsource
 - Overhead of starting VMs in an external provider
- Add a new virtual host per each external provider

Economic-based scheduling

Fault tolerance

- Uncertain hosts crashes
 - Estimate hosts reliability
- Resume failed VMs
- Evaluate VM tolerance to failure
 - Web applications: state-less
 - HPC tasks: need checkpoints

- Calculate benefit of the current VMs allocation
- Optimize system in order to get higher benefit for VM allocations
 - Hill climbing algorithm
- Possible changes to be applied to the system:
 - Create VM
 - Execute (outsource) VMs in external providers
 - Migrate VM among nodes
 - Cancel VMs execution
 - Keep VMs that cannot be executed in a queue
 - Apply turn on/off policy

Turn on/off approach: save energy

- Use two thresholds
- Turn off idle servers
 - Turn off servers as soon as they are not used
- Turn on new machines if they are required
 - Wait until machines are needed
- Use of consolidation
 - More energy savings
 - Lower performance

- Simulated environment
- Heterogeneous real workload (one week)
 - Grid 5000:
 - $\sim\!\!2000$ tasks with an average of $\sim\!\!5000$ seconds per task
 - Anonymous European ISP
 - Aggregation of several web-based services
- 100 virtualized hosts

Environment: power simulator

- Simulate nodes with different features
 - Fast and reproducible results
- Scheduling policies:
 - Random
 - Round robin
 - Backfilling
 - Dynamic backfilling
 - Economic-based

Metrics:

- Energy consumption (Wh)
- Client satisfaction (SLA fulfillment)
- Benefit (euros)
- SLA penalties:

Evaluation

Local allocation

- Metrics
 - Normalized average power to the best policy
 - Client satisfaction
- Scheduling policies
 - Static: no migration
 - Dynamic: use migration to consolidate

Evaluation

- Scheduling policies in a faulty environment
 - 99.9% node reliability: an average of one or two failures per week
- "Fault tolerance" policy
 - Performs checkpoints of HPC tasks
 - Able to manage with node crashes

• Outsource resources in order to withstand period of peak loads

- Using 65 nodes: support peak load and high CAPEX
- Using 30 nodes: outsource peak load and save CAPEX

- Improve energy efficiency
- Deal with virtualization overheads
 - More SLAs are fulfilled
- Increase provider's benefit
- Future work
 - Dynamic SLA enforcement
 - Powering on/off servers with dynamic turn on/off thresholds
 - Add more heterogeneity support

Multifaceted Resource Management for Dealing with Heterogeneous Workloads in Virtualized Data Centers

Íñigo Goiri, J. Oriol Fitó, Ferran Julià, **Ramón Nou**, Josep Ll. Berral, Jordi Guitart and Jordi Torres

Barcelona Supercomputing Center (BSC) and UPC Barcelona Tech.