Performance comparison between a 2 phases and a 3 phases Negotiation protocol

Antoine Pichot, Alejandro Gaspar
April, 2007
Agenda

1. Problem
2. Model
3. Results
The Problem
The context: Co-allocation

Multiple Computing farms

A (G)MPLS network

How to reserve two (or more) resources at the same time?
I.e.: A network connexion & a CPU
Solutions

- VIOLA like (2Phases commit protocol)

- WS-Agreement based Negotiation (3Phases Commit Protocol)
 - Cf O. Waeldrich & W. Ziegler draft @OGF18
3 Phases Commit Protocol vs 2 Phases

- Capability and availability check

- Pre-reservation
 - Resource are reserved with short reservation lifetime
 - (No penalties if reservation is cancelled at this stage)

- Commitment
 - Resource are reserved whenever needed
 - (penalties if cancelled)
VIOLA reservation process

Figure 1: The negotiation process
VIOLA’s Meta-Scheduler reservation
The Model Explained
Model origin

Gurbani V.K., Jagadeesan L., Mendiratta V.B.,

“Characterizing session initiation protocol (SIP) network performance and reliability”,

International service availability symposium, April 2005
Model explained (1)

Job requests \Rightarrow Clients of the queuing network

Time spent in a waiting queue \Rightarrow Time spent in a state inside the MS

A queue \Rightarrow A state inside the MS
Model Explained (2), Notation convention

\[\mu_1 \]

1/\(\mu_1 \) is the average time taken by the Meta-Scheduler to
- receive the CreateAgreement message,
- process it, and
- take action

\[\mu_2 \]

\[\mu_1 \] is the average time taken by the Meta-Scheduler to
Model Explained (3), Example

Example synchronous
2 Phases Negotiation protocol Model

Asynchronous

Synchronous
3 Phases Negotiation protocol Model

Asynchronous

Synchronous
Service Time & Error Probability example

After a few measures on a P4@2.8GHz

- Receive an XML message .. 1 ms
- Check message validity ... 0.002 ms
- Parse the message ... 0.715 ms
 +1.717ms

Probability to cancel a reservation : 10%
Probability to need to look after scheduling horizon : 10%

Those values can be modified to take more realistic values.
Limiting Queue

For example (3 Phases Asynchronous):

Arrival rate

\[\rho_2 = \frac{\lambda / \mu_2}{1 - (Q + (M(A + CB)))} \]

Service rate

Probability to loop or to get an error

\[N = \sum_{k=1}^{NbQueues} \frac{\rho_k}{1 - \rho_k} \]
Results
Maximum Job request Arrival Rate in the Meta-Scheduler

Almost NO IMPACT on Arrival Rate

NEED for ASYNCHRONOUS Implementation
Mean number of Jobs in the Meta-Scheduler

Performance loss of 3PNP over 2PNP
Less than 50%

Arrival Rate = 63 job/s
Delay ~ 240ms

xPNP : x Phases Negotiation Protocol
Conclusions

Need for an Asynchronous implementation (obvious)
Performance loss of a 3 Phases over a 2 Phases Negotiation protocol is

- less than 10% on the maximum job request arrival rate
- less than 50% on the total job request processing delay and memory requirement
References

Article to be published soon...
by the end of the year

For a similar model used in a different context: