Production-Quality Grid Environments with UNICORE

Dietmar Erwin, Michael Rambadt, Achim Streit and Philipp Wieder
Research Centre Jülich (FZJ)

GGF 14 Workshop on Grid Applications: from Early Adopters to Mainstream Users

June 27, 2005, Chicago
Contents

- Setting the scene
- UNICORE in production
- OpenMolGRID: an application example
- Lessons learned: what users expect (& what they get)
- Conclusions
Status UNICORE

- Long project history (and future), currently DEISA, NaReGI, UniGrids, VIOLA, ...

- Features
  - GUI with single sign-on, X.509 certificates for AA and job/data signing, only one opened port in firewall required, workflow engine for complex multi-site/multi-step workflows, job monitoring, extensible application support, secure data transfer integrated, resource management, resources autonomy remains, production quality, ...

- Available as Open Source under BSD license on SourceForge at http://unicore.sourceforge.net
Production at FZJ

- National high-performance computing centre “John von Neumann Institute for Computing”
- About 650 users in 150 research projects
- Access via UNICORE to
  - p690 IBM eServer Cluster 1600 (8,9 TFlops peak) since June 2004
  - BlueGene/L (5,7 TFlops peak)
  - Cray SV1ex, Cray XD1
- 116 active UNICORE users
  - 72 external, 44 internal
- Resource usage (2004/05; CPU-hours)
  - Dec: 18.4%, Jan: 30.4%, Feb: 30.5%, Mar: 27.1%, Apr: 29.7%, May: 39.1%
DEISA

- Status (Q1/2005): 4 sites / ~24 TFlops IBM Power4 / 1 Gbit / GPFS / LoadLeveler
- Goal (2006): 11 sites / ~140 TFlops / 10 GBit / GPFS / Metascheduler
DEISA configuration
OpenMolGRID: Problem

Goal: “Speed-up, automate, and standardise the drug-design using Grid technology”

- Characteristics of the problem:
  - High calculation complexity
  - Large amounts of data
  - Integration of different applications
  - Secure access to distributed data
  - Collaborative work

→ A real Grid application
OpenMolGRID: Solution

- Usage of UNICORE, integration of applications
- Extended workflow support to automate processes
- Interface to databases
- API & command line interface

> 5 days
< 2 hours

280 2D structures downloaded

3D Output
Descriptors
QSAR

EPA ECOTOX Database
UNICORE

3D Output
Descriptors
QSAR
Lessons Learned

- Taught by end-users and software developers from
  - Industry: pharmaceutical, petrochemical, bio-molecular, weather prediction, automotive, engineering
  - Research: astrophysics, quantum physics, material science, medicine, biology, chemistry
- Deployment of new production software has to offer added value
  - Ease usage, increase effectiveness, decrease cost, ...
- Users have to be stimulated and encourage to
  - use Grid technology for applications, computations, data transfer and access to resources
  - adapt/integrate their applications to/into Grids
- Operation of production environments is costly
  - Certification authority, administrative tools, integration into site management, licenses, ...
  - Common production environment difficult to maintain
More lessons learned

- Fulfilment of functional requirements is not enough
- Users want
  - software of high quality, especially high reliability and resilience
  - help to overcome initial hurdles like
    - obtaining certificates, adapt applications, ...
  - 24/7 availability of the Grid infrastructure
  - 24/7 availability of the Grid experts
    - support hotline, help desk, mailing lists, ...
  - long-term commitment for continuous development and support
  - workshops, hands-on training, ...
Conclusions

- Production Grids are possible
  - Easy/unified usage, integration of legacy applications, cost reduction, ...
  - When will we see the WS-* impact?

- Users demand a fully-fledged product
  - Functions, but also support, support, support
  - Continuity is crucial

- Open Source distribution is the right way
  - Source for bug reports, requirements, ...
  - Higher visibility & community building