DMOVER:
Parallel Data Migration for
Mainstream Users

Nathan T.B. Stone
Pittsburgh Supercomputing Center
DMOVER Origins

“Why am I here?”
– Adm. James Stockdale

“It’s the users, stupid.”
– almost Bill Clinton

• One particular user needed to migrate TBytes of data between PSC and SDSC with regularity, else not compute at PSC.
Mainstream User: Defined

mān’strēm yōo’zər (n.)

HPC researcher with a **low tolerance** for infrastructural instability or complexity. Such users are perceived to be dependent upon resources and utilities delivering **exceptional performance** **exactly** as advertised **every** time.
Is that hard?

• At the time the DMOVER project was launched (late 2004) large data transfers were still:
 – Not running in parallel
 – Getting 10s of MB/sec, “on a good day”
 • Users occasionally reported <10 MB/sec

 – This was not well suited to inter-site migration of large datasets
Recent survey of HSM utilization at PSC

- 93% of data stored in the HSM are transferred in “sessions” of 10 or more files

- For these sessions:
 - Average file size = 93 MB
 - Average number of files = 378

- Therefore:
 - Typical users need solutions for large file count but modest file sizes
GridFTP Client Survey

• globus-url-copy
 – The early standard (functionality only)
 – Good for single files, but command lines are “long”

• “Striped GridFTP” (later feature of GUC)
 – Good for large (GBs) files, but still singles

• uberFTP
 – Great user interface
 • Editor’s Choice: for browsing and small file count
 – Supports a parallel mode
 • But all streams terminate at the client’s host 😞
GridFTP Client Survey (cont.)

- Reliable File Transfer (RFT)
 - “What we’ve all been waiting for” (Apr05)
 - Good for large file count
 - Parallel
 - Asynchronous
 - Reliable (automagically retries failures)
 - Editor’s Choice: for performance and function

... As long as it’s between two GridFTP servers
- But this is not the case for all sites
- And, with the ever-expanding ETF, it is likely to get harder, not easier
What if…

• Your site could not run a GridFTP server (daemon) on your file server (host)?
 ➢ You’d need a different approach…

• That happened to be our situation at PSC
 • The GridFTP server relies upon the Globus Toolkit
 …but the Globus Toolkit (v4) does not build on Tru64

• So we cannot present our LeMieux:/scratch parallel file system to the ETF via GridFTP
…Make Lemonade

Faced with the fact that:

• There is no GridFTP server that can run on the LeMieux file servers (yet)

• Users store their large datasets in LeMieux /scratch (a PFS)

• Users want to migrate data from this location to other ETF sites

We choose to:

• Run local distributed clients!
The DMOVER Strategy

- Use the batch system to acquire local nodes for parallel transfer clients
- Use a process manager to farm out parallel streams
- Use Qsockets for optimal transfer bandwidth
Qsockets

- PSC-specific network optimization
- An intercept library to divert TCP socket operations through:
 - An RPC library, for setup/tear-down & ioctl
 - QSNet, for send/recv
- Works with legacy binaries, client & server
- Acts as a client-side library, communicating with a “Qserver” process on the Application GateWay (AGW) nodes
 - Qserver acts as the ultimate client (or server) relaying the data back to the application via QSNet
Application GateWays (AGWs)

• Multi-home servers connecting LeMieux internal compute nodes to the ETF network

• Impedance-matching
 – 1 QSNet (250+ MB/sec DMA)
 – 2 GigE (110+ MB/sec)
 – Two virtual servers (“Qservers”) to each node

• Co-scheduled via PBS with compute jobs
Qsockets Efficiency

- At SC’04 we competed in the Bandwidth Challenge
 - Transfer as much data as possible via a scientific application

- Our application: Writing remote checkpoints from a running application

Results:

- 32 writers over 32 AGW nodes achieved an average of 31.1 Gbps (97% network BW)
DMOVER

Three Portable Scripts…
Script 1. Batch Script (Bash)

```bash
#PBS -l rmsnodes=4:4
#PBS -l agw_nodes=4

# root of the file(s)/directory(s) to transfer (a convenience)
export SrcDirRoot=$SCRATCH/mydata/

# path to the target sources, relative to SrcDirRoot (wildcards allowed)
export SrcRelPath="*.dat"

# destination host name (one or more, round-robin)
export DestHost=tg-c001.sdsc.teragrid.org,
tg-c002.sdsc.teragrid.org,tg-c003.sdsc.teragrid.org,
tg-c004.sdsc.teragrid.org

# root of the file(s)/directory(s) at the other side (dest path)
export DestDirRoot=/gpfs/ux123456/mydata/

# run the process manager
/scratcha1/dmover/dmover_process_manager.pl "$SrcDirRoot" "$SrcRelPath"
"$DestHost" "$DestDirRoot" "$RMS_NODES"
```
Script 2. Process Manager (Perl)

```perl
for ($i=0; $i<=$#file; $i++){  
    # pick host IDs, unless we just got them from wait()  
    if ($i<$nStreams){  
        $shostID = $i % $ENV{'RMS_NODES'};  
        $dhostID = $i % ($#host+1);  
        $dest=$host[$dhostID];  
    }  
    # command to launch the transfer agent  
    $cmd = "prun -N 1 -n 1 -B \`offset2base $shostID\` $DMOVERHOME/dmover_transfer.sh $SrcDirRoot $file[$i] $dest $DestDirRoot $shostID"  
    $child = fork();  
    if ($child){  
        $cid{$child}[0] = $shostID;  
        $cid{$child}[1] = $dhostID;  
    }  
    if (!$child){  
        $ret = system($cmd);  
    }  
    # keep the number of streams constant  
    if ($nStreams<=$i+1){  
        $pid = wait;  
        # re-use whichever source host just finished...  
        $shostID = $cid{$pid}[0];  
        # re-use whichever remote host just finished...  
        $dhostID = $cid{$pid}[1];  
        delete($cid{$pid});  
    }  
}  
while (-1 != wait){  
    sleep(1);  
}
```
Script 3. Transfer Agent (Bash)

```bash
export X509_USER_PROXY=$HOME/.proxy
export GLOBUS_LOCATION=/usr/local/globus/globus-2.4.3
export GLOBUS_HOSTNAME=`/bin/hostname -s`.psc.edu
. $GLOBUS_LOCATION/etc/globus-user-env.sh
# set up Qsockets
. $DMOVERHOME/agw_setup.sh $5

SrcDirRoot=$1
SrcRelPath=$2
DestHost=$3
DestDirRoot=$4

args="-tcp-bs 8388608"

```

```bash
$GLOBUS_LOCATION/bin/globus-url-copy $args file://$SrcDirRoot/$SrcRelPath
gsiftp://$DestHost/$DestDirRoot/$SrcRelPath"
```

echo `~/bin/hostname -s` : $cmd

time agw_run $cmd
```
User Documentation (already!)

• Check out:
  – http://teragrid.psc.edu/lemieux/jobs.html#dmover

• And the user said?
  “I moved a directory containing 516 files from /scratcha1 on Lemieux to /gpfs on our TeraGrid IA-64 system. The total size was 134GBytes and the transfer took around 10 minutes, or roughly 200 MByte/sec. Very nice!
  Thank you so much for getting me past the globus roadblock.”

And so on, to TBytes…
Performance and Portability

“Promises may make friends, but 'tis performances that keep them.”

– German proverb
Per-Stream BW

Stream BW (MB/sec) vs. # Streams for different file sizes:
- 2 GB
- 200 MB
- 100 MB

The graph shows that the Stream BW decreases with an increasing number of streams.
- For 2 GB files, the Stream BW decreases significantly with more streams.
- For 200 MB and 100 MB files, the decrease is less pronounced.

Lower Stream BW for smaller files is observed as the number of streams increases.
Aggregate BW

no plateau yet…

Aggregate BW (MB/sec)

# Streams

2 GB
200 MB
100 MB
Scalability

• Per-stream BW: decreases with increasing stream count
  – Indicates poor scaling of the underlying PFS
    (NB: <12 streams is always one per host)
• Aggregate BW: no clear plateau yet, so more streams
  would still save wall-time (in case of emergency)
• Smaller files (even 100’s of MB) suffer from per-
  session overhead
  – No cure in sight for this…
• Ultimately limited by the PFS performance
  – And where most of the hard work goes…
Portability

• All HPC sites have schedulers
• These scripts could run anywhere
• Although:
  – Qsockets lines are PSC-specific
    • But this feature is not likely to be needed elsewhere
Questions?

Nathan Stone
<nstone@psc.edu>
http://www.psc.edu/~nstone/

PSC Advanced Systems Group
http://www.psc.edu/advanced_systems/

Whitepapers for ongoing work at PSC
http://www.psc.edu/publications/tech_reports/