
GFD-I.9 G. Fox, Community Grids Lab, Indiana University
Category: Informational M. Pierce, Community Grids Lab, Indiana University
Grid Computing Environments - RG D. Gannon, CS & PTL, Indiana University
 M. Thomas, TACC, University of Texas, Austin
 Feb 2003

gcf@indiana.edu 1

Overview of Grid Computing Environments

Status of This Memo

This memo provides information to the Grid community interested in portal access to Grid
systems. Distribution is unlimited.

Copyright Notice

Copyright © Global Grid Forum (2002). All Rights Reserved.

Abstract

We present a survey of best practice in Grid Computing Environments coming from a study of
some 50 papers. We abstract this best practice in terms of architectural principles – multi-tier
service-based model, role of meta-data, workflow, tools and core functionalities forming a
GCEShell and aggregation portals. We expect many of these will be further refined in separate
documents.

.

Contents

Abstract.. 1
1. Introduction ... 2
2. Overall Classification of GCE Systems... 2
3. Summary of GCE Projects and Features ... 4

3.1 Technology for building GCE Systems... 4
3.2 Largely Problem Solving Environments ... 4
3.3 Largely Basic GCEShell Portals ... 5
3.4 Workflow... 5
3.5 Data Management .. 6
3.6 GCEShell Tools .. 6

4. GCE Computing Model ... 7
4.1 Survey of GCE Models ... 7
4.2 Two-level Programming Model... 9

5. Portal Services.. 10
5.1 The Open Grid Service Architecture Implications for GCE Portals 12

6. Security Considerations .. 13
Author Information ... 13
Intellectual Property Statement ... 14
Full Copyright Notice ... 14
References .. 14

GFD-I.9 Feb 2003

gcf@indiana.edu 2

1. Introduction

This document summarizes the current status of Grid Computing Environments. It integrates 15
chapters [38-52] of a recent book [37] with a survey [36, 38] of a set of 29 papers [1-28] gathered
together by the GCE (Grid Computing Environment) research group [55] of the Global Grid Forum
(GGF), which was published in 2002 as a special issue of the journal Concurrency and
Computation: Practice and Experience [54]. The Grid is rapidly evolving in both concept and
implementation and there is a corresponding excitement and confusion as to the “right” way to

think about Grid systems. Grid
Computing Environments (GCE) roughly
describe the “user side” of a computing
system which is illustrated in figure 1
where there is a fuzzy division between
GCE’s and what is called “Core” Grid in
the figure. The latter would include
access to the resources, management of
and interaction between them, security
and other such capabilities. The new
Open Grid Services Architecture (OGSA)
[56] (which is itself evolving) describes
these “Core” capabilities and the Globus
project [32] is the best known “Core”
software project.
We can define a Grid Computing
Environment as a set of tools and
technologies that allow users “easy”
access to Grid resources and
applications. Often it appears to the user

as a Web portal that provides the user interface to a multi-tier Grid application development stack,
but it may also be as simple as a Grid Shell that allows a user access to and control over Grid
resources in the same way a conventional shell allows the user access to the file system and
process space of a regular operating system. The different papers summarized for this document
all imply a diagram similar to figure 1 but differ in technology used (Perl versus Python for
example), capability discussed and the emphasis on user versus program (back end resource)
view.

As discussed above, GCE’s fulfill (at least) two functions –

• “Programming the User Side of the Grid” which is the topic discussed in sections 2-4 of
this document.

• Controlling user interaction – rendering any output and allowing user input in some (web)
page. This includes aggregation of multiple data sources in a single portal page. This
aspect of GCE’s is presented in section 5.

2. Overall Classification of GCE Systems
Grid Computing Environments can be classified in several different ways. One straightforward
classification is in terms of technologies used. The different projects differ in terms of languages
used, nature of treatment of objects (if any), use of particular technology like Java servlets, the
Globus toolkit, or GridFTP, and other implementation issues. Some of these issues are important
for performance or architecture but often can look to the user as not so important. For instance,
there is a trend to use more heavily Java, XML and Web Services but this will only be interesting
if the resultant systems have important properties such as better customizability, sustainability
and ease of use without sacrificing too much in areas like performance. The ease of development

Fig. 1. Middle-Tier and Raw (HPC) Linked
Components of an Application showing both
the “Core” and Computing Environments

Database

Database
Service

Compute
Service

Compute
Service

MPP
Service

Portal

HPC or “Native” Linkage

Middle Tier or Proxy Linkage

Grid
Computing

Environments

“Core”
Grid

GFD-I.9 Feb 2003

gcf@indiana.edu 3

using modern technologies often yields greater functionality in the GCE for a given amount of
implementation effort. Technology differences in the projects are important but more interesting at
this stage are the differences in capabilities and the model of computing explicit or implicit in the
GCE.

All GCE systems assume there are some backend remote resources (the Grid) and endeavor to
provide convenient access to their capabilities. This implies one needs some sort of model for
“computing”. At the simplest this is running a job, which already has non trivial consequences as
data usually needs to be properly set up, and access is required to the running job status and
final output. More complex examples require coordinated gathering of data, many simulations
(either linked at a given time or following each other), visualization, analysis of results etc. Some
of these actions require substantial collaboration between researchers and sharing of results and
ideas are needed. This leads to the concept of GCE collaboratories supporting sharing among
scientific teams working on the same problem area.

We can build a picture of different GCE approaches by viewing the problem as some sort of
generalization of the task of computing on a single computer. So we can highlight the following
classes of features:
1) Handling of the basic components of a distributed computing system – files, computing and

data resources, programs, and accounts. The GCE will typically interface with an
environment like Globus or a batch scheduler like PBS to actually handle the back-end
resources. However the GCE will present the user interfaces to handle these resources. This
interface can be simple or complex and often constructed hierarchically to reflect tools built in
such a fashion. We can follow the lead of UNIX (and Legion [43] in its distributed extension)
and define a basic GCEShell providing access to the core distributed computing functions.
For example, JXTA [35] also builds Grid-like capabilities with a UNIX shell model. GCEShell
would support running and compiling jobs, moving among file systems etc. GCEShell can
have a command line or more visually appealing graphical user interface.

2) The 3-tier model of fig. 1, which is typically used for most systems, implies that any given
capability (say run a matrix inversion program) can appear at multiple levels. Maybe there is
a backend parallel computer running an MPI job; this is front-ended perhaps as a service by
some middle-tier component running on a totally different computer, which could even be in a
different security domain. One can “interact” with this service at either level; a high
performance I/O transfer at the parallel computing level and/or by a slower middle-tier
protocol like SOAP at the service level. These two (or more) calls (component interactions)
can represent different functions or the middle tier call can be coupled with a high
performance mirror; typically the middle tier provides control and the back end “raw data
transfer”. The resultant rather complicated model is shown in fig.1. We have each component
(service) represented in both middle and HPC (raw) tiers. Intra-tier and inter-tier linkage is
shown. Ref. [39], Programming the Grid, has an excellent review of the different
programming models for the Grid.

3) One broadly important general-purpose feature is Security (authentication, authorization and
privacy), which is addressed in some way or other by essentially all environments.

4) Data management is another broadly important topic, which gets even more important on a
distributed system than it is on single machines. It includes file manipulation, databases and
access to raw signals from instruments such as satellites and accelerators.

5) One augments the basic GCEShell with a library of other general purpose tools and this can
be supported by the GCE. Such tools include (Grid)FTP, (Grid)MPI, parameter sweep and
more general workflow, and the composition of GCEShell primitives.

6) Other higher-level tools are also important and many tend to be rather application dependent;
visualization and intelligent decision support as to what type of algorithm to use can be put
here.

7) Looking at commercial portals, one finds that they usually support sophisticated user
interfaces with multiple sub-windows aggregated in the user interface. The Apache Jetspeed
project is a well-known toolkit supporting this [33]. This user interface aggregation is often
supported by a GCE. This aggregation is described in the final section 5.

GFD-I.9 Feb 2003

gcf@indiana.edu 4

 As well as particular features, a GCE usually implies a particular computing model for the Grid
and this model is reflected in the GCE architecture and the view of the Grid presented to the user.
For example object models for applications are very popular and this object view is reflected in
the view of the Grid presented to the user by the GCE. Note the programming model for a GCE is
usually the programming of rather large objects – one can describe programs and hardware
resources as objects without this object model necessarily changing the software model used in
applications.

With this preamble, we can now classify the papers summarized for this document. There are, as
always, no absolute classifications for a complex topic like distributed Grid systems. Hence it is
often the case that these projects can be looked at from many overlapping points of view.

3. Summary of GCE Projects and Features
3.1 Technology for building GCE Systems

In the previous section of this book we have described the basic architecture and technologies
needed to build a Grid and we have described the basic component for the different types of
GCE’s above. As previously mentioned, ref. [39] provides an excellent overview of many of the
back-end application programming issues.

The Globus toolkit [32] is the most widely used Grid middleware system, but it does not provide
much direct support for building GCE’s. Refs. [6, 14, 15, 27] and [44] describe respectively Java,
CORBA, Python and Perl Commodity Grid interfaces to the Globus toolkit. These provide the
basic building blocks of full GCE’s. Ref. [1] describes the Grid Portal Development Toolkit
(GPDK), a suite of JavaBeans suitable for Java based GCE environments; the technology is
designed to support JSP (Java Server Pages) displays. Together, the COG Kits and GPDK
constitute the most widely used frameworks for building GCE’s that use the Globus environment
for basic Grid services. The problem solving environments in Refs. [7], [8] and [20] build on top of
the Java Commodity Grid Kit [6]. The portals described in ref. [51] build directly on top of the Perl
Commodity Grid Kit [27].

Another critical technology for building GCE’s is a notification/event service. Ref. [21] notes that
current Grid architectures build more and more on message-based middleware and this is
particularly clear for Web Services; this paper designs and prototypes a possible event or
messaging support for the Grid. Refs. [21,49] describes the Narada Brokering system, which
leverages peer-to-peer technology to provide a framework for routing messages in the wide-area.
This is extremely important in cases where the GCE must cross the trust boundaries between the
user’s environment and the target Grid.

Ref. [9] provides C support for interfacing to the Globus toolkit and portals exposing the toolkit’s
capabilities can be built on the infrastructure of this paper. Ref. [17] proposes interesting XML
based technology for supporting the runtime coupling of multidisciplinary applications with
matching of geometries. Ref. [28] describes a rather different technology; namely a Grid simulator
aimed at testing new scheduling algorithms.

3.2 Largely Problem Solving Environments

We have crudely divided those GCE’s offering user interfaces into two classes. One class
focusing on a particular application (set) which are sometimes called application portals or
Problem Solving Environments (PSE’s). The second class offer generic application capabilities
and have been termed user portals; in our notation introduced above, we can call them GCEShell
portals. Actually one tends to have a hierarchy with PSE’s building on GCEShell portals; the
latter building on middleware like GPDK; GPDK builds on the Java CoG Kit [6] which itself builds

GFD-I.9 Feb 2003

gcf@indiana.edu 5

on the Globus toolkit that finally builds on the native capabilities of the Grid component resources.
This hierarchy is for one set of technologies and architecture but other approaches are similarly
built in a layered fashion.

Several papers surveyed include discussion of Grid PSE’s. Ref. [5] has an interesting discussion
of the architectural changes to a “legacy” PSE consequent on switching to a Grid Portal
approach. Ref. [11] illustrates the richness of PSE with a survey of several operational systems;
these share a common heritage with the PSE’s of Ref. [16] although the latter paper is mainly
focused on a recommender tool described later.

Five further papers describe PSE’s that differ in terms of GCE infrastructure used and
applications addressed. Ref. [7] describes two PSE’s built on top of a GCEShell portal with an
object computing model. A similar portal is the XCAT Science portal [29], which is based on the
concept of application Notebooks that contain web pages, Python scripts and control code
specific to an application. In this case the Python script code plays the role of the GCEShell. The
astrophysics collaboratory [20] includes the Globus toolkit link via Java [6] and the GPDK [1]; it
also interfaces to the powerful Cactus distributed environment [31]. Ref. [18] and [47] presents a
portal for computational physics using Web services – especially for data manipulation services.
The Polder system [24] and SCIRun [25] offer rich visualization capabilities within several
applications including biomedicine. SCIRun has been linked to several Grid technologies
including NetSolve [10], and it supports a component model (the CCA [34] which is described in
ref. [53]) with powerful workflow capabilities.

The Discover system described in ref. [48] describes a PSE framework that is built to enable
computational steering of remote Grid applications. This is also an important objective of the
work on Cactus described in ref. [42], Classifying and Enabling Grid Applications.

3.3 Largely Basic GCEShell Portals

Here we describe the set of portals designed to support generic computing capabilities on the
Grid. Ref. [3] is interesting as it is a Grid portal designed to support the stringent requirements of
DoE’s ASCI program. This reflects not only security and performance issues but the particular
and well established computing model for the computational physicists using the ASCI machines.
Ref. [4] describes a portal interface to the very sophisticated Legion Grid which has through the
Legion Shell a powerful generic interface to the shared object (file) system supported by Legion
[43]. This paper also describes how specific problem solving environments can be built on topic of
the basic GCEShell portal.

Unicore [23] was one of the pioneering full featured GCEShell portals developed originally to
support access to a specific set of European supercomputers but recently has been interfaced to
the Globus toolkit and, as described in ref. [50], to the Open Grid Services Architecture [56].
Unicore has developed an interesting abstract job object (AJO) with full workflow support.

Refs. [7, 13, 45] describe well developed GCEShell portals technology on which several
application specific PSE’s have been built. Ref. [51] describes the NPACI Grid Portal toolkit,
GridPort, which is middleware using the Perl Community Grid Kit [27] to access the Globus
toolkit. Ref. [26] also describes HotPage, a GCEShell built on top of GridPort.

3.4 Workflow

Workflow corresponds to composing a complete job from multiple distributed components. This is
broadly important and is also a major topic within the commercial Web service community. It is
also inherently a part of a GCEShell or PSE, since these systems are compositions of specific
sequences of tasks. Several projects have addressed this but currently there is no consensus
how workflow should be expressed, although several groups have developed visual user
interfaces to define the linkage between components. Workflow is discussed in papers [3], [8],

GFD-I.9 Feb 2003

gcf@indiana.edu 6

[17], [23] and [25]. The latter integrates Grid workflow with the dataflow paradigm, which is well
established in the visualization community. BPEL4WS is an important new workflow proposed
standard [60] that may have a large impact on the Grid community. Ref. [17] has stressed the
need for powerful runtime to support the coupling of applications and this is implicit in other
papers including Ref. [8]. We discuss this further in section 4.2.

3.5 Data Management

Data intensive applications are expected to be critical on the Grid but support of this is not
covered in this report. Interfaces with file systems, databases and data transfer through
mechanisms like GridFTP are covered in several papers. This is primarily due to the fact that data
management software is still relatively new on the grid. Ref. [47] describes a SOAP based web
service and a portal interface for managing data used within a large scientific data grid project.
Almost all modern Grid portals have GridFTP components that allow users to use the portal to
upload and download files and move them from one place to another.

3.6 GCEShell Tools

In our GCE computing model, one expects a library of tools to be built up that add value to the
basic GCEShell capabilities. The previous two subsections describe two tools – workflow and
data management of special interest and here we present a broad range of other tools which
appeared in several papers in the Grid Computing Environments special issue.

Netbuild [2] supports distributed libraries with automatic configuration of software on the wide
variety of target machines on the Grids of growing heterogeneity. NetSolve [10, 46] pioneered the
use of agents to aid the mapping of appropriate Grid resources to client needs. Ref. [16]
describes a recommendation system, which uses detailed performance information to help users
on a PSE, choose the best algorithms to address their problem.

Many projects have noted the importance of “parameter sweep” problems where a given
application is run many times with different input parameters. Such problems are very suitable for
Grid environments and Ref. [22] describes a particular parameter sweep system Nimrod-G. This
paper focuses on a different tool – namely a novel scheduling tool based on an economic model
of Grid suppliers and consumers. Ref. [40] describes another well regarded parameter sweep
system APST building on the AppLeS application level scheduling system.

HotPage described in Refs. [26 and 51], is well known for pioneering the provision of job status
information to portals; such a tool is clearly broadly important.

We should stress visualization as a critical tool for many users and here Refs. [25] and [17]
describe this area. There are many other important tools like data-mining which fall into this
category of sophisticated Grid analysis capabilities.

We can perhaps provide some sense of order to this area by borrowing familiar ideas from UNIX
with the basic Grid “programming primitives” usefully be expressed as a “GCE Shell” introduced
earlier. As described above, Shell primitives will be exposed to the user in different ways using
different paradigms and their expression. One way of exposing the Shell primitives will be as a
command line interface but in many cases one will present a higher-level view. Complete domain
specific high-level systems are “just” Problem Solving Environments mentioned above. The
Legion Grid system [4] illustrates the GCE Shell clearly with a Legion shell naturally extending
that familiar from UNIX. The GCE Shell has some features in common with the UNIX shell as for
instance file manipulation is critical both in UNIX and the Grid. However there are some
interesting differences. For instance the Grid (and hence the GCE Shell) must express

• The negotiated interaction between services and users
• Files and services at all levels of system – local client, middle-tier, backend resource

GFD-I.9 Feb 2003

gcf@indiana.edu 7

• Distinction between an object and its meta-data; copying an object might be a major high-
performance task; copying the meta-data is typically a modest effort.

Looking at primitives needed, the GCE Shell needs to add several features compared to the
UNIX Shell such as:

• Search
• Discovery
• Registration
• Security
• Better workflow than pipe or tee in UNIX shell
• Groups and other collaboration features as in JXTA [35]
• Meta-data handling
• Management and Scheduling
• Networks
• Negotiation primitives for service interaction

Thinking about the GCE Shell, one can simplify discussion by using a uniform service model so
that files and executables are both services and not distinct as in UNIX. One probably needs a
“virtual service” concept so that an individual file access is a service in the Shell even though it
could be implemented differently. This is an example of possible areas for new compiler research.

The GCE shell is at its heart “just” a catalog of the primitive functions needed to program the Grid.
In fact, the list above is a subset of the core services that are part of OGSA. Grid programming
paradigms are particular ways to manipulate them to build applications. Portal services described
in sections 3.3 and 5 are the way of interacting with the user. Putting this all together gives you a
Problem Solving Environment as discussed in section 3.2.

4. GCE Computing Model

4.1 Survey of GCE Models

In the preamble we
suggested that it was
interesting to consider
the computing model
underlying Grid
Computing
Environments. This
refers to the way we
think about the world of
files, computers,
databases and
programs exposed
through a portal.
NetSolve described in
Refs. [10 and 46]
together with the Ninf
effort, refs. [30 and 41],
have developed the
important Network
Service model for
distributed computing.
Rather than each user
downloading a library to
solve some part of their

Application
Service

Application
Software

HPC Facing
Ports

Service
Facing Ports

User
Facing Ports

“Middle-
Tier”

Raw (HPC)
Resource

Figure 2. A Proxy Service Programming Model showing 4
types of Interactions :to and from users (portal interface),

between proxy and raw resource, other middle-tier
components and between other raw (hpc) resources

GFD-I.9 Feb 2003

gcf@indiana.edu 8

problem, this task is dispatched to a Network resource providing this computational service. Both
Ninf and NetSolve support the new GridRPC remote procedure call standard, which encapsulates
a key core part of their Grid computing model described in ref. 39. GridRPC supports scientific
data structures as well as Grid specific security and resource management.

Ref. [12] describes Grid implementations of MPI (message passing standard for parallel
computing), which address the incompatibilities between MPI implementations and binary
representations on different parallel computers. Note that in the notation of Fig. 1, MPI is at the
“HPC backend linkage” layer and not at the middleware layer. Ref. [20] supports the Cactus
environment [31, 42] which has well developed support for Grid computing at the HPC layer i.e. it
supports backend programming interfaces and not the middle-tier GCEShell environment. The
astrophysics problem solving environment of Ref. [20] augments Cactus with a full middle tier
environment.

Legion described in refs. [4, 43], built a very complete Grid object model. Ref. [8] describes a
CORBA distributed object model for the Grid and Refs. [19 and 48] describes the surprisingly
hard issues involved in providing interoperability between multiple CORBA GCE’s. We can hope
that Web services will prove to be easy to make interoperable, as the technology used (XML,
SOAP) is more open than CORBA, which has evolved with several often incompatible
implementations as listed in Ref. [14].

Refs. [7, 13, 23, 45, 50] and the XCAT Science Portal [29, 53] also present an object model for
GCE computing but with one critical feature – namely the middle tier objects are always proxies,
which hold the meta-data that describe “real resources” which operate in conventional
environments. This proxy strategy appears useful for many Grid resources although the true

Network service model
of NetSolve is also
essential. Let us give a
simple example from
UNIX and suppose one
wanted to send data
between two programs
(in different machines).
One could choose the
mechanism within the
program and use a
simple socket or FTP or
RMI interaction
mechanism.
Alternatively the
programs could be
written generically with
output and input or
“standard I/O”. The
programs could then
have the output of one
“piped” to the input of

the other from a UNIX shell command. Such a hybrid programming model with actions partly
specified internally and partly specified at service level is important of the success of the Grid and
should be built into programming models for it.

Any GCE computing model should support both the meta-data only and wrapped styles of Grid
objects. Actually going back to point 2) in Section 2, the proxy and NetSolve model are not really
different as indicated in figures 2 and 3. Both models effectively wrap application (software)
resources as objects. In the proxy model, one exposes the interaction between middle-tier and
back-end. In the wrapped service model of NetSolve and Ninf, one presents a single entity to the

Application
wrapped

as a
Service

User
Facing Ports

Service
Facing Ports

“Middle-
Tier”

HPC Facing
Ports

Raw (HPC)
Resource

Figure 3. A Wrapped Application Programming Model
showing 3 types of Interactions to and from users (portal
interface) to and from other middle-tier components and

between other raw (HPC) resources

GFD-I.9 Feb 2003

gcf@indiana.edu 9

user. In both cases, one can have separate middle-tier and HPC (“real”) communication. To
complicate the classification, there can of course be a difference between programming model
abstraction (proxy or not) and implementation. In the XCAT model, a software component
system [53] is used which implements the wrapped service or proxy model. The component
system is based on Web Service standards so it is possible that the wrapped service components
may be arbitrary Grid Services.

An additional aspect of the computing model that must be addressed by GCE systems is the way
in which resources are managed. In refs. [22, 52], Grid Resource Allocation and Control Using
Computational Economies, the authors make the case for an economic model of resource
allocation and provisioning. There is a good chance that such approaches will be used as we
scale Grid system to very large sizes.

4.2 Two-level Programming Model

We can usefully discuss some GCE computing models by thinking of application software in a
simple two level hierarchy. There is “microscopic” software controlling individual CPU’s and
written in familiar languages like Fortran, C++ and Python. We assume that these languages
generate “nuggets” or code modules and it is making these nuggets associated with a single
resource that “traditional” programming addresses. To give examples, the nugget could be the
SQL interface to a database, a parallel image processing algorithm or a finite element solver. This
well understood (but of course still unsolved) “nugget programming” must be augmented for the
Grid by the integration of the distributed nuggets together into a complete “executable”.
Programming the nugget internals is currently viewed as outside the Grid although projects like
GrADS [57] are looking at integration of individual resource (nugget) and Grid programming. Here
we will assume that each nugget has been programmed and we “just” need to look at their
integration. This integration is actually quite familiar and generalizes “Shell/Perl…” scripts used in
single resources for UNIX operating systems and the Microsoft Com/ActiveX/…. interfaces in PC
Case.

There are several manifestations of this style of Grid Programming. One broad class is the
Problem Solving Environments of section 3.2 that feature a Portal Interface to a set of carefully
chosen tool and application services usually customized to a particular problem domain. This has
both a graphical user interface described in section 5 and some sort of “software bus” to link the
different parts of the PSE together.

The integration (or software bus) of application nuggets is often called “workflow”, and as
discussed in section 3.5 the user can be offered many different paradigms for expressing this.
One common model is a graphical interface where one can choose nuggets from a palette and
link “ports” or channels of the nuggets. This is familiar from visualization and image processing
where systems like AVS [58] and Khoros [59] are well established. Industry has developed XML
specifications for this nugget linkage with approaches like BPEL4WS (Business Process
Execution Language for Web Services [60]) and WSCL (Web Services Conversation Language
[61] where it’s the nuggets having conversations and not the users!). Simpler and perhaps more
powerful is “just” to program the linkage with scripting (such as Python) or compiled (like Java)
languages (this is the Software “bus” idea). We can expect it to be useful to have multiple
paradigms and multiple languages and it is unlikely that any one of these is “best”. Important Grid
approaches for describing the programming of nuggets include the CCA (Common Component
Architecture [34, 53]) from DoE and the ICENI project [62] of the UK e-Science Program.

The above examples indicate that “programming the user view of the Grid” has overlaps with
(distributed) object technology but in this document, we are not trying to “push a particular
programming model” but rather to illustrate the “issues to be addressed” and to stress the
commonality of the problem being addressed with however major differences occurring in the
implementations. Although related to tasks familiar from programming PC’s or workstations,
“Programming the user view of the Grid” is significantly more complicated. As illustrated in fig. 1,
the “executable” (integrated nuggets) is a mixture of both system and application services; one

GFD-I.9 Feb 2003

gcf@indiana.edu 10

uses system services on a single workstation but the meta-OS services of the Grid are currently
expected to have programmable interfaces whereas many of the corresponding workstation
(Windows, UNIX) services are more opaque. OGSA is part of the picture as many system
services in fig. 1 will be those defined and implemented as part of the OGSA initiative.

Not only do we have the richness of both system and application nuggets, many Grid

systems separately maintain both “real” entities (such as a software nugget) and separately
entities representing the meta-data describing the “real” entity. We expect this separation to
continue and indeed expand in use for there is a clear need to define more meta-data and it
seems likely that this metadata will often be stored separately from the resource it describes.

As a typical nugget programming challenge, one must take into account both needed
latency/bandwidth of application and network constraints (firewalls) to decide most appropriate
communication mechanism between nuggets. This typically runtime specification of the
implementation of a particular service-service interaction has no agreed approach. There are of
course many examples of its use with particular implementation strategies. “Agents”, “brokers”
and “profiles” are typical of the language one often uses to describe this adaptive mechanism. In
fact it seems possible that the field of agents will merge with that of the Grid. Further in
developing Grid programming one has to study both

• The programming paradigm and within a paradigm one can choose particular languages
– this could be scripted, visual, or compiled.

• The run-time library, which could be largely shared between different paradigms in
functionality but might be expressed rather differently in each separate approach.

The many articles discussed in this document are partly differentiated by their emphasis on these
two different aspects of the problem.

5. Portal Services

Portal services control and render the user interface/interaction and Fig. 4 shows a key
architectural idea emerging in this area. We assume that all material presented to the user
originates from a Web service which is called here a content provider. This content could come
from a simulation, data repository or stream from an instrument. Each such Web Service has
resource or service facing ports (RFIO in fig. 4), which are those used to communicate with other
services. Here we are more concerned with the user-facing ports which produce content for the
user and accept input from the client devices. These user-facing ports use an extension of
WSDL, which is being standardized by the OASIS organization. This is called WSRP or Web
Services for Remote Portals http://www.oasis-open.org/committees/wsrp/. It implements the so-
called portlet interface, which is being standardized in Java as part of a JCP (Java Community
Process).

Content Provider

WSDL

Web Service

F
I

U

O

F
I

R

O

Portal
Aggregate

WS-User Facing
Fragments

Render

Other WS
User Facing
Ports

Other WS

Fig. 4: Portal providing aggregation service for document fragments produced
by user-facing ports of a Content providing Web Service

Resource-facing
Ports User-facing

Ports

GFD-I.9 Feb 2003

gcf@indiana.edu 11

Most user-interfaces need information from more than one content provider. For example, a
computing portal could feature separate panels for job-submittal, job status, visualization and
other services. One could integrate this in a custom application-specific Web service but it is
attractive to provide a generic aggregation service. This allows the user and/or administrator to
choose which content providers to display and what portion of the display real estate they will
occupy. In this model each content provider defines its own “user-facing document fragment”
which is integrated by a portal. Such aggregating portals are provided by the major computer
vendors and also by Apache in its well known Jetspeed project
(http://jakarta.apache.org/jetspeed/). Portlets represent a component model for user interfaces in
the same way that Web Services represent a middleware component model. Using this approach
has obvious advantages of re-usability and modularity. One then has an elegant view with
workflow integrating components (Web services representing nuggets) in the middle tier and
aggregating portals integrating them for the user interface. Figure 5 illustrates these ideas with a
portal being developed for the NCSA Alliance in a project led by Gannon and Plale. One sees
four separate interfaces (3 on left and one on right) to different GCE Web services. Each of these
Web services can be associated with one or more GCEShell capabilities. Further capabilities are
aggregated using tabs at the top. This project involves many different institutions developing
particular user interface fragments with the component interface architecture allowing convenient
integration. The aggregation of the work of the different groups is provided by Web services
(OGSA) in the middle tier and by systematic use of portlets at the user interface.

Fig. 6 points out some other portal services which correspond to the ability of adapting rendered
content to accommodate particular clients. This addresses both differences between devices (for
example immersive versus desktop versus handheld) and issues of universal access –
accommodating to possible physical limitations of the user. The architecture of fig. 4 becomes
more complex as now one needs a negotiation between client and content provider to define the
rendered view. This requires a portal selection service to process user profiles and choose
appropriate content. One also can package common filters to for example reduce resolution for a

GFD-I.9 Feb 2003

gcf@indiana.edu 12

multi-media content. This work on universal access is familiar in audio-video conferencing
(protocols like H323 negotiate “best” codecs to fit client) and is being pursued by W3C as part of
its accessibility initiative. The collection of aggregator, selector and filtering capabilities illustrate
common portal services that can be shared by multiple Grid applications.

5.1 The Open Grid Service Architecture Implications for GCE Portals

OGSA consists of a set of core Grid web services defined in terms of the Open Grid Service
Infrastructure (OGSI) specification. An OGSI compliant Grid web service defines a subclass of
web services whose ports all inherit from a standard Grid Service port. Using this port there are
standard ways that a remote portal can interrogate the service to discover such things as the
other port types the service implements and what operations can be made on those ports and the
public internal state of the service. OGSI services can also implement a simple event
subscription and notification mechanism in a standard way. OGSI also provides a mechanism for
services to be group together into service collections. The simple and standard nature of OGSI
makes it possible for us to build on-the-fly compilers to generate portal portlets interfaces to any
OGSI compliant grid service.

The core services defined by OGSA include registries, directories and namespace binding,
security, resource descriptions and resource services, reservation and scheduling, messaging
and queuing, logging, accounting, data services (caches and replica managers), transaction
services, policy management services, workflow management and administration services. Each
of these core services is rendered as a Grid web service. (At the time of this writing, this list is
probably incomplete and it is certainly not yet official.) Applications that are designed for an
OGSA compliant Grid can assume that these services are available and, with the proper
authorization, that they can be used.

GFD-I.9 Feb 2003

gcf@indiana.edu 13

As part of the standard GGF-GCE portal framework, we can build and distribute portlets for
accessing both the client and management ports for these services. OGSA will provide a natural
and easy to use building block platform for both GCE portals and applications.

6. Security Considerations
One of the primary tasks of any Grid portal is to manage secure access to Grid resources.
Consequently security is discussed in most papers on this topic. The GCE’s based on Globus
and Legion use the Public Key Infrastructure. Kerberos is required by some installations (DoD
and DoE for instance in the USA) and Grid Computing Environments developed for them [3] [7]
[13] are based on this security model.

Many current portals rely on https connections between the user’s browser and portal server.
However, identity certificates are often stored on a trusted third part known as a “MyProxy”
server. The user is required to store a proxy certificate, which is valid for a day or so, on the
MyProxy server with a private password. The portal server can then request the password from
the user and then ask MyProxy server for a copy of the proxy certificate. Once the portal has a
copy of the proxy certificate, it can then delegate it to the portlets to use on behalf of the user
when interacting with remote Grid services.

 Security is of fundamental importance to GCE portals and we will continue to observe the
progress of the GGF OGSI security working group.

7. Author Information

Geoffrey Fox
Community Grid Computing Laboratory,
Indiana University
501 N Morton Suite 224
Bloomington IN 47404
gcf@indiana.edu

Marlon Pierce
Community Grid Computing Laboratory,
Indiana University
501 N Morton Suite 224
Bloomington IN 47404
marpierc@indiana.edu

Dennis Gannon
Department of Computer Science
Lindley Hall 215
Indiana University
gannon@cs.indiana.edu

Mary Thomas
Texas Advanced Computing Center, The
University of Texas at Austin, 10100 Burnet
Road,
Austin, Texas 78758
mthomas@tacc.utexas.edu

GFD-I.9 Feb 2003

gcf@indiana.edu 14

8. Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Copies
of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification can be obtained from the
GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the GGF Executive Director.

9. Full Copyright Notice

Copyright (C) Global Grid Forum (2002). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the copyright
notice or references to the GGF or other organizations, except as needed for the purpose of
developing Grid Recommendations in which case the procedures for copyrights defined in the
GGF Document process must be followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE
GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN
WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE."

10. References

1) Jason Novotny, “The Grid Portal Development Kit”, Concurrency and Computation:

Practice and Experience Vol. 14, Grid Computing environments Special Issue 13-15, pages
1129-11444, 2002. This article is also found as Chapter 27, pages 657-674 of Ref. [37].

2) Keith Moore and Jack Dongarra, “NetBuild: Transparent Cross-Platform Access to
Computational Software Libraries”, Concurrency and Computation: Practice and
Experience Vol. 14, Grid Computing environments Special Issue 13-15, pages 1445-1456,
2002.

3) Randal Rheinheimer, Steven L. Humphries, Hugh P. Bivens and Judy I. Beiriger, “The
ASCI Computational Grid: Initial Deployment”, Concurrency and Computation: Practice and
Experience Vol. 14, Grid Computing environments Special Issue 13-15, pages 1351-1364,
2002.

GFD-I.9 Feb 2003

gcf@indiana.edu 15

4) Anand Natrajan, Anh Nguyen-Tuong, Marty A. Humphrey and Andrew S. Grimshaw, “The
Legion Grid Portal”, Concurrency and Computation: Practice and Experience Vol. 14, Grid
Computing environments Special Issue 13-15, 1365-1394, 2002.

5) Karen Schuchardt, Brett Didier and Gary Black , “Ecce - A Problem Solving Environment's
Evolution Toward Grid Services and a Web Architecture”, Concurrency and Computation:
Practice and Experience Vol. 14, Grid Computing environments Special Issue 13-15, pages
1221-1240, 2002.

6) Gregor von Laszewski, Jarek Gawor, Peter Lane, Nell Rehn, and Mike Russell “Features of
the Java Commodity Grid Kit”, Concurrency and Computation: Practice and Experience
Vol. 14, Grid Computing environments Special Issue 13-15, pages 1045-1056, 2002.

7) Tomasz Haupt, Purushotham Bangalore and Gregory Henley, “Mississippi Computational
Web Portal”, Concurrency and Computation: Practice and Experience Vol. 14, Grid
Computing environments Special Issue 13-15, pages 1275-1288, 2002.

8) Andreas Schreiber, ”The Integrated Simulation Environment TENT”, Concurrency and
Computation: Practice and Experience Vol. 14, Grid Computing environments Special
Issue 13-15, pages 1553-1568, 2002.

9) Giovanni Aloisio and Massimo Cafaro, “Web-based access to the Grid using the Grid
Resource Broker Portal”, Concurrency and Computation: Practice and Experience Vol. 14,
Grid Computing environments Special Issue 13-15, pages 1145-1160, 2002.

10) D. Arnold, H. Casanova, and J. Dongarra, “Innovations of the NetSolve Grid Computing
System”, Concurrency and Computation: Practice and Experience Vol. 14, Grid Computing
environments Special Issue 13-15, pages 1457-1480, 2002.

11) Naren Ramakrishnan, Layne T. Watson, Dennis G. Kafura, Calvin J. Ribbens, and Clifford
A. Shaffer, “Programming Environments for Multidisciplinary Grid Communities”,
Concurrency and Computation: Practice and Experience Vol. 14, Grid Computing
environments Special Issue 13-15, pages 1241-1274, 2002.

12) M. Mueller , E. Gabriel and M. Resch, “A Software Development Environment for Grid
Computing”, Concurrency and Computation: Practice and Experience Vol. 14, Grid
Computing environments Special Issue 13-15, pages 1543-1552, 2002.

13) Marlon. E. Pierce, Choonhan Youn, and Geoffrey C. Fox, “The Gateway Computational
Web Portal”, Concurrency and Computation: Practice and Experience Vol. 14, Grid
Computing environments Special Issue 13-15, pages 1411-1426, 2002.

14) Gregor von Laszewski, Manish Parashar, Snigdha Verma, Jarek Gawor, Kate Keahey, and
Nell Rehn, “A CORBA Commodity Grid Kit”, Concurrency and Computation: Practice and
Experience Vol. 14, Grid Computing environments Special Issue 13-15, pages 1057-1074,
2002.

15) Keith Jackson “pyGlobus: A Python interface to the Globus Toolkit”, Concurrency and
Computation: Practice and Experience Vol. 14, Grid Computing environments Special
Issue 13-15, pages 1075-1084, 2002.

16) E. Houstis, A. C. Catlin, N. Dhanjani and J. R. Rice, N. Ramakrishnan and V. Verykios,
“MyPYTHIA: A Recommendation Portal for Scientific Software and Services”, Concurrency
and Computation: Practice and Experience Vol. 14, Grid Computing environments Special
Issue 13-15, pages 1481-1506, 2002.

17) erry A. Clarke and Raju R. Namburu, “A Distributed Computing Environment for
Interdisciplinary Applications”, Concurrency and Computation: Practice and Experience Vol.
14, Grid Computing environments Special Issue 13-15, pages 1161-1174, 2002.

18) William A. Watson III , Ian Bird, Jie Chen, Bryan Hess, Andy Kowalski and Ying Chen, “A
Web Services Data Analysis Grid”, Concurrency and Computation: Practice and
Experience Vol. 14, Grid Computing environments Special Issue 13-15, pages 1303-1312,
2002.

19) Vijay Mann and Manish Parashar, “Engineering an Interoperable Computational
Collaboratory on the Grid”, Concurrency and Computation: Practice and Experience Vol.
14, Grid Computing environments Special Issue 13-15, pages 1569-1594, 2002.

20) Gregor von Laszewski, Michael Russell, Ian Foster, John Shalf, Gabrielle Allen, Greg
Daues, Jason Novotny and Edward Seidel, “Community Software Development with the
Astrophysics Simulation Collaboratory”, Concurrency and Computation: Practice and

GFD-I.9 Feb 2003

gcf@indiana.edu 16

Experience Vol. 14, Grid Computing environments Special Issue 13-15, pages 1289-1302,
2002.

21) Geoffrey Fox and Shrideep Pallickara, “An Event Service to Support Grid Computational
Environments”, Concurrency and Computation: Practice and Experience Vol. 14, Grid
Computing environments Special Issue 13-15, pages 1097-1128, 2002.

22) Rajkumar Buyya, David Abramson, Jonathan Giddy, and Heinz Stockinger, “Economics
Paradigm for Resource Management and Scheduling in Grid Computing”, Concurrency and
Computation: Practice and Experience Vol. 14, Grid Computing environments Special
Issue 13-15, pages 1507-1542, 2002.

23) Dietmar W. Erwin, “UNICORE – A Grid Computing Environment”, Concurrency and
Computation: Practice and Experience Vol. 14, Grid Computing environments Special
Issue 13-15, pages 1395-1410, 2002.

24) K. A. Iskra,R. G. Belleman, G. D. van Albada, J. Santoso, P. M. A. Sloot, H. E. Bal, H. J. W.
Spoelder and M. Bubak, “The Polder Computing Environment: a system for interactive
distributed simulation”, Concurrency and Computation: Practice and Experience Vol. 14,
Grid Computing environments Special Issue 13-15, 1313-1336, 2002.

25) Chris Johnson , Steve Parker and David Weinstein, “Component-Based Problem Solving
Environments for Large-Scale Scientific Computing”, Concurrency and Computation:
Practice and Experience Vol. 14, Grid Computing environments Special Issue 13-15, pages
1337-1350, 2002.

26) M. Thomas, M. Dahan, K. Mueller, S. Mock, C. Mills,and R. Regno, “Application Portals:
Practice and Experience”, Concurrency and Computation: Practice and Experience Vol. 14,
Grid Computing environments Special Issue 13-15, pages 1427-1444, 2002.

27) S. Mock, M. Dahan, M. Thomas and G. von Lazewski, “The Perl Commodity Grid Toolkit”,
Concurrency and Computation: Practice and Experience Vol. 14, Grid Computing
environments Special Issue 13-15, pages 1085-1096, 2002.

28) Manzur Murshed, Rajkumar Buyya, and David Abramson, “GridSim: A Toolkit for the
Modeling and Simulation of distributed resource management and scheduling for Grid
Computing”, Concurrency and Computation: Practice and Experience Vol. 14, Grid
Computing environments Special Issue 13-15, pages 1175-1220, 2002.

29) S. Krishnan, R. Bramley, M. Govindaraju, R. Indurkar, A. Slominski, D. Gannon, J.
Alameda and D. Alkaire ``The XCAT Science Portal,'', Proceedings SC2001, Nov. 2001,
Denver.

30) Ninf network server project http://ninf.apgrid.org/
31) Cactus Grid Computational Toolkit http://www.cactuscode.org
32) The Globus Grid Project http://www.globus.org
33) Apache Jetspeed Portal http://jakarta.apache.org/jetspeed/site/index.html
34) Common Component Architecture http://www.cca-forum.org/
35) JXTA Peer-to-Peer Environment http://www.jxta.org
36) G.C. Fox, D. Gannon and M. Thomas, “Editorial: A Summary of Grid Computing

environments”, Concurrency and Computation: Practice and Experience Vol. 14, Grid
Computing environments Special Issue 13-15, pages 1035-1044, 2002.

37) Fran Berman, Geoffrey Fox and Tony Hey, ‘Grid Computing: Making the Global
Infrastructure a Reality’, ISBN 0-470-85319-0, John Wiley & Sons Ltd, Chichester, 2003.
See http://www.grid2002.org

38) Geoffrey Fox, Dennis Gannon, and Mary Thomas, ‘Overview of Grid computing
environments’, Chapter 20, pages 543-554 in Ref. [37].

39) Craig Lee and Domenico Talia, ”Grid Programming Models: Current Tools, Issues and
Directions”, Chapter 21, pages 555-578 in Ref. [37].

40) Henri Casanova and Fran Berman, “Parameter Sweeps on the Grid with APST”, Chapter
33, pages 773-788 in Ref. [37].

41) Hidemoto Nakada, Yoshio Tanaka, Satoshi Matsuoka and Staoshi Sekiguchi, “Ninf-G: a
GridRPC system on the Globus Toolkit”, Chapter 25, pages 625-638 in Ref. [37].

42) Gabrielle Allen, Tom Goodale, Michael Russell, Edward Seidel and John Shalf, “Classifying
and enabling Grid applications”, Chapter 23, pages 601-614 in Ref. [37].

GFD-I.9 Feb 2003

gcf@indiana.edu 17

43) Andrew S. Grimshaw, Anand Natrajan, Marty A. Humphrey, Michael J. Lewis, Anh Nguyen-
Tuong, John F. Karpovich, Mark M. Morgan and Adam J. Ferrari, “From Legion to Avaki:
The Persistence of Vision”, Chapter 10, pages 265-298 in Ref. [37].

44) Gregor von Laszewski, Jarek Gawor, Sriram Krishnan and Keith Jackson, “Commodity Grid
Kits - Middleware for Building Grid Computing Environments”, Chapter 26, pages 639-658
in Ref. [37].

45) Tomasz Haupt and Marlon E. Pierce, “Distributed object-based grid computing
environments”, Chapter 30, pages 713-728 in Ref. [37].

46) Sudesh Agrawal, Jack Dongarra, Keith Seymour, and Sathish Vadhiyar, “NetSolve: Past,
Present, and Future; A Look at a Grid Enabled Server”, Chapter 24, pages 615-624 in Ref.
[37].

47) William A. Watson, Ying Chen, Jie Chen and Walt Akers, “Storage Manager and File
Transfer Web Services”, Chapter 34, pages 789-804 in Ref. [37].

48) V. Mann and M. Parashar, “DISCOVER: A Computational Collaboratory for Interactive Grid
Applications”, Chapter 31, pages 729-746 in Ref. [37].

49) Geoffrey Fox and Shrideep Pallickara, “NaradaBrokering: An Event Based Infrastructure for
Building Scaleable Durable Peer-to-Peer Grids”, Chapter 22, pages 579-600 in Ref. [37].

50) David Snelling, “Unicore and the Open Grid Services Architecture”, Chapter 29, pages 701-
712 in Ref. [37].

51) Mary Thomas and Jay Boisseau, "Building Grid Computing Portals: The NPACI Grid Portal
Toolkit", Chapter 28, pages 675-700 in Ref. [37].

52) Rich Wolski, John Brevik, James S. Plank, and Todd Bryan, “Grid resource allocation and
control using computational economies”, Chapter 28, pages 747-772 in Ref. [37].

53) Dennis Gannon, Rachana Ananthakrishnan, Sriram Krishnan, Madhusudhan Govindaraju,
Lavanya Ramakrishnan, and Aleksander Slominski, “Grid Web services and application
factories”, Chapter 9, pages 251-264 in Ref. [37].

54) Concurrency and Computation: Practice and Experience
http://www3.interscience.wiley.com/cgi-bin/issuetoc?ID=102522447

55) GCE research group of the Global Grid Forum, http://www.gridforum.org/7_APM/GCE.htm.
56) Open Grid Services Architecture (OGSA) http://www.gridforum.org/ogsi-

wg/drafts/ogsa_draft2.9_2002-06-22.pdf
57) GrADS (Grid Application Development Software Project

http://www.hipersoft.rice.edu/grads/
58) AVS http://www.avs.com/
59) Khoros http://www.khoral.com/
60) BPEL4WS Business Process Execution Language for Web Services http://www-

106.ibm.com/developerworks/webservices/library/ws-bpel/
61) WSCL Web Services Conversation Language http://www.w3.org/TR/wscl10/
62) ICENI project (http://www.lesc.ic.ac.uk/iceni/) of the UK e-Science Program.

