
GFD-I.060  J. MacLaren, LSU 
Grid Economy Services Architecture WG  S. Newhouse, OMII 
  T. Haupt, MSU 
  K. Keahey, ANL 
  W. Lee, London e-Science Center 
  January 10, 2006  

 

 

 

Grid Economy Use Cases 
 
Status of this Memo 

 
This memo provides information to the Grid community relating to “Grid Economies”, i.e. 
Grid computing environments where services may be freely bought, sold, traded, etc.  It 
does not define any standards or technical recommendations.  Distribution is unlimited. 

 
Copyright Notice 

 
Copyright (C) Global Grid Forum (2006). All Rights Reserved. 
 
 

Abstract 
 
This document presents a number of Use Cases relating to “Grid Economies”, i.e. Grid 
computing environments where services may be freely bought, sold, traded, etc. 
Specifically we describe and analyze use cases of computational provider, application 
service provider, software application provider, brokering service provider, and 
computational reseller. 
 
This document is a product of the Grid Economic Services Architecture (GESA) Working 
Group of the Global Grid Forum.  The initial intent of this document was to provide input 
into the GESA-WG’s technical work: the design of standard mechanisms to enable Grid 
Economies.  Since the last version of this draft, the technical work, which was based upon 
the Open Grid Services Infrastructure, has been abandoned.  However, the authors still 
believe that these use cases have value, and so we are publishing them.  
 



GFD-I.060  January 10, 2006 

gesa-wg@ggf.org  2 

Contents 
 

1 Introduction 3 

2 Use Cases 3 

2.1 Computational Provider Use Case 3 
2.1.1 Summary 3 
2.1.2 Scenario(s) 3 
2.1.3 Example Usage 4 
2.1.4 Commercial Perspective 4 
2.1.5 Consumed Resources 5 
2.1.6 Architectural Requirements 5 

2.2 Application Service Provider 5 
2.2.1 Summary 5 
2.2.2 Scenario(s) 6 
2.2.3 Example Usage 6 
2.2.4 Commercial Perspective 6 
2.2.5 Consumed Resources 7 
2.2.6 Architectural Requirements 7 

2.3 Software Application Provider 7 
2.3.1 Summary 7 
2.3.2 Scenario(s) 7 
2.3.3 Example Usage 7 
2.3.4 Commercial Perspective 8 
2.3.5 Consumed Resources 8 
2.3.6 Architectural Requirements 8 

2.4 Brokering Service Provider 8 
2.4.1 Summary 8 
2.4.2 Scenario(s) 8 
2.4.3 Example Usage 9 
2.4.4 Commercial Perspective 9 
2.4.5 Consumed Resources 9 
2.4.6 Architectural Requirements 9 

2.5 Computational Reseller Use Case 9 
2.5.1 Summary 9 
2.5.2 Scenario(s) 10 
2.5.3 Example Usage 10 
2.5.4 Commercial Perspective 11 
2.5.5 Consumed Resources 11 
2.5.6 Architectural Requirements 11 

3 Security Considerations 12 

4 Author Information 12 

5 Intellectual Property Statement 12 

6 Full Copyright Notice 13 



GFD-I.060  January 10, 2006 

gesa-wg@ggf.org  3 

 
1 Introduction 

 
This document contains a description and analysis of Use Cases focusing on Grid Computing 
environments where services may be freely bought, sold, traded, etc., i.e. Grid Economies. 
Specifically, we describe the following use cases: 
 

• Computational Provider (providing primarily hardware resources) 
• Application Service Provider (providing primarily execution: software and hardware on 

which the software executes) 
• Software Application Provider (providing primarily software) 
• Brokering Service Provider (a reseller: matching consumers to providers) 
• Computational Reseller (reselling resources) 

 
 
2 Use Cases 

 
2.1 Computational Provider Use Case 
 
This use case was contributed by Jon MacLaren, Steven Newhouse, Tomasz Haupt. 
 
2.1.1 Summary 
 
There are many instances where a user finds locally available computational resources 
inadequate for their requirements.  Currently, their main option is to try and locate a suitable 
resource, obtain an account there, learn about using this new resource, and finally submit their 
work to the resource; their only other option is to make do with what they have!  Worse still, 
obtaining an account may not be possible due to bureaucratic hurdles.  
 
2.1.2 Scenario(s) 
 
A user with a computational job to do cannot satisfy their requirements with locally available 
resources.  They take these requirements to a resource broker (e.g. architectural, installed 
applications, cost of cycles and turnaround time), using which, they discover a computational 
resource able to satisfy their requirements. 
 
The user does not have an account at this site, but is able to find a suitable method to pay for the 
work to be done.  In addition, the new site finds the security credentials of the prospective user to 
be acceptable; similarly, the user finds the site’s credentials to be acceptable. 
 
The user and the site make any final negotiations, finding an agreed turnaround time and cost, 
resulting in a form of contract between them.  The user accepts this contract by submitting the 
work. 
 



GFD-I.060  January 10, 2006 

gesa-wg@ggf.org  4 

Following the successful delivery of the resources, payment, which was secured earlier, is finally 
processed.  The user also collects the results of the computation. 
 
2.1.3 Example Usage 
 
There are many rare and/or expensive computing resources which currently lie outside the grasp 
of potential users, e.g. supercomputers, vector processing machines.  Obtaining access to such 
resources is generally complicated for members of communities which can gain access.  For the 
casual user, i.e. the “nerd in the street”, access is typically impossible. 
 
Even though such computers are not very usable by everyday programmers, we would argue that 
the following groups would make use of such a facility: 
 

• Academics with small supercomputers (16 processors), who want to run their codes on a 
large machine of the same architecture, to study scalability, or for obtaining points on a 
speedup curve for a paper. 

 
• Non-academic companies may have sufficient compute capacity to handle their workload 

for 90% of the year, but require additional computing power near the end of the financial 
year. 

 
• Scientists with codes that perform well only on a vector processing machine, and who 

cannot find such resources locally. 
 

• The trusted computational reseller, who has a significant customer base (or is often 
approached by brokers) keen to obtain such resources; this results in the sale of a large 
chunk of resources for use in the future. 

 
• The “Nerd-in-the-street” who would like to make use of a large supercomputer as a one-

off. 
 
Such usage patterns cannot be supported by current registration and accounting systems. 
 
2.1.4 Commercial Perspective 
 
The buyer is paying for their computational work to be done, i.e. purchasing computational 
power which can satisfy his/her requirements.  Some amount of memory and temporary disk 
storage will also be used at the same time.  There may also be the purchase of a single-use 
licence for a particular application, or funds to “rent” a site-licence (or part thereof) for the 
duration of the job. 
 
The seller is providing time on some computational resource, i.e. CPU cycles on some machine 
or cluster.  The seller may also be wishing to offset some of the cost of expensive software 
licences that have been purchased by renting the use of the licensed application.  Alternatively, if 
a pay-per-use license is available, the site owner may be taking a cut on each use of the software. 
 



GFD-I.060  January 10, 2006 

gesa-wg@ggf.org  5 

Conversely, this can also be viewed as the seller bidding for work.  This is especially applicable 
in the case of an underloaded machine, where the owner is trying to prevent potentially valuable 
cycles from being lost. 
 
Naturally, all costs may depend on the user’s status, e.g. academic vs. commercial user. 
 
2.1.5 Consumed Resources 
 
CPU cycles on a machine or cluster are being consumed.  Presumably, some amount of disk 
space, and memory are also being used.  Some sort of pay-per-use licence could be being traded 
as well, or a permanent site-licence (or part thereof) could be being “rented out”. 
 
 
2.1.6 Architectural Requirements 
 
Only requirements relevant to GESA will be described here. 
 
For the computational provider to be able to reach as large a potential market as possible, they 
must be able to accept as many payment mechanisms as possible.  Therefore, the architecture 
must be agnostic in these terms, e.g. allowing a Visa transaction, or invoice and purchase order 
systems, etc. 
 
As such transactions could be many and frequent, it should also be possible for payments to be 
aggregated, e.g. for monthly billing.  (If the centre does not want to handle this sort of 
accounting, they should be selling large chunks of resource to resellers – see Computational 
Reseller Scenario.) 
 
When the customer is a one-off or ad-hoc user, the purchase is likely to be for a small amount of 
resource in the near future.  When the customer is a reseller, the purchase is likely to be larger, 
and further into the future.  Therefore the architecture must be able to handle varying 
granularities of requests.  Also, to make the selling process more flexible, and therefore more 
attractive to the reseller, it should be possible to purchase of resources where the time of use is 
not precisely stated, e.g. “I will buy 512 CPU hours on green.cfs.ac.uk for consumption some-
time over the following month (which I will re-sell)” 
 
 
2.2 Application Service Provider 
 
This use case was contributed by Kate Keahey. 
 
2.2.1 Summary 
 
The service provider is providing access to service execution (comprising software and resources 
as opposed to just one of them). Certain quality-of-service (QoS) constraints may be requested 
by the client. Likewise, the service provider may make representations about provided quality of 
service in terms of execution time, response time, accuracy of results, etc. The charge for the 



GFD-I.060  January 10, 2006 

gesa-wg@ggf.org  6 

service may be based on the QoS provided (faster execution costs more) or reliability with which 
this QoS has been provided. Note, that the eventual QoS exposed by the application service must 
be an end-to-end QoS from the point of view of the client. 
 
The contact describing the constraints associated with the service can be expressed as a service 
level agreement (SLA). 
 
2.2.2 Scenario(s) 
 
The National Fusion Collaboratory (NFC: www.fusiongrid.org) provides network services 
allowing for better integration of experiment, analysis and simulation. Fusion experiments are 
run in a pulsed more with new experimental pulses taking place every 15-20 minutes. The 
analysis of each pulse could serve as input to the next pulse. In this situation, it is important to be 
able to perform the analysis of a pulse within a roughly 10 minute time window in order to allow 
sufficient time for digesting the results, and adjusting the experimental parameters accordingly. 
Up to now, the prevalent way of dealing with this problem was to buy more and more dedicated 
resources. An alternative is to use remote computational resources, which would be possible if 
only their execution could bounded by the requisite real-time parameters. At the same time, less 
time-critical executions could be provided at a lesser price.  
 
2.2.3 Example Usage 
 
Not provided. 
 
2.2.4 Commercial Perspective 
 
The seller is providing application development and maintenance on a familiar set of resources 
(platforms). In addition, the seller is also providing (if necessary exclusive or pre-emptive) usage 
of resources necessary to provide end-to-end QoS: execute all the codes involved, move and 
store data, etc. as well as orchestration of codes and resources. In some cases (such as NFC) the 
service provider may provide additional capabilities such as on-the-fly diagnostics and 
debugging of a service. Finally, the server makes representations about the QoS that can be 
obtained from a service which could include predictions etc. (in other words, the seller also sells 
the ability to estimate/predict certain qualities). 
 
The buyer buys execution with a certain QoS: execution time, response time on a query, security 
of interaction, or reliability of execution. 
 
Charges could be made based on requested/delivered QoS (based on the QoS itself and/or 
reliability with which it was delivered), the resource usage incurred during the actual execution. 
In addition, charges could be made based on a monthly subscription (say to a database service), 
accumulation of small charges, or one time per-execution charge. They also could be made based 
on a “Grid session” for a user or a virtual organization, or on a per-service usage.  We note that 
although these remarks emerged in the ASP context, they really seem more suited to more than 
just this use case. 
 



GFD-I.060  January 10, 2006 

gesa-wg@ggf.org  7 

2.2.5 Consumed Resources 
 
The consumed resources in this case include code development, maintenance, and execution, 
resource usage, orchestration services (hopefully general-purpose software itself combining 
codes and resources), prediction and reservation services (and other services necessary to issue 
the SLA). 
 
2.2.6 Architectural Requirements 
 
The enabling technologies include: software supporting making statements about the provided 
QoS, contract management software, the ability to transfer contract execution rights between 
buyers and sellers. 

 
2.3 Software Application Provider 
 
This use case was contributed by Steven Newhouse.   
 
2.3.1 Summary 

 
The current model of using a software library (or program) provided by a commercial vendor is 
for that library to be installed on a specific host. The library is enabled, following an exchange of 
money and the acceptance of the terms of the licence agreement by the host organisation, with a 
licence key for a particular combination of host and platform. The amount paid for the licence 
may be dependent on the platform, the user (e.g. academic/commercial), the number of 
concurrent users, the duration of the licence, the type of support, the number of users and the 
functionality within the library. 
 
Within the grid a user may have a variety of machines available for their use. Not all of these 
machines will have the necessary software required for all user activity. Nor will the system 
managers wish to pay for and install software for casual remote users. Therefore the ability to 
‘buy, install & execute’ a software library or application on demand is essential. 
 
2.3.2 Scenario(s) 
 
A user wishes to conduct a fluid dynamics analysis using their favourite CFD software. They 
establish which computational resource they will be using [Link to other use case?] and wish to 
dynamically install the CFD software onto that resource. By providing information on the 
execution host and the expected duration of the analysis they request a licence and the binary. A 
licence key is provided with the downloaded software library for unpacking and use on the 
machine. The purchase of the licence key (start & end date) needs to be coordinated with the 
reservation on the computational resource. 
 
2.3.3 Example Usage 

 
Not provided. 



GFD-I.060  January 10, 2006 

gesa-wg@ggf.org  8 

 
2.3.4 Commercial Perspective 
 
The seller is providing access to their intellectual property encapsulated with a software library 
or application. This is exposed to a user on their machines through a well-defined programmatic 
API that may be dynamically linked into the users own library. The buyer is obtaining access to 
this functionality as and when they want it on the resource that they want. Currently, the 
installation and configuration of these libraries is a privileged operation due to the provisioning 
of the licence keys.  
 
2.3.5 Consumed Resources 
 
The focus in this use case is to enable the invocations on a software API. This may be licensed 
on a per invocation basis (very fine-grained) or over a (short) time period. The items being 
charged will therefore be a (sub)set of a library’s API for a particular duration on a specific host. 
 
2.3.6 Architectural Requirements 

 
The software provider needs to provide information on the availability of the software (which 
versions on which platforms and any requirements for dependent libraries, e.g. MPI for 
commercial ScaLAPACK library). 
 
The primary constraints on the architecture are the ability to pay for the service. 
 
Current pricing models may be very dependent on the type of user (e.g. commercial or 
academic), their location (e.g. USA, Europe, etc) or the level of support offered (e.g. none, 
telephone, application consultancy). These pricing models should be supported in the GESA 
model although there is an argument that in the long-term a pricing model may be user agnostic. 
 
 
2.4 Brokering Service Provider 
 
This use case was contributed by Kate Keahey 
 
2.4.1 Summary 
 
The service provider is providing a service as a “reseller” matching different client request to 
different provider offerings.  
 
2.4.2 Scenario(s) 
 
Resource Broker. A user seeks a resource with described by a certain set of parameters (for 
example: availability of networking infrastructure, certain number of CPUs of defined power, 
proximity of storage resources). The brokering service presents the user with a list of acceptable 
(or near-acceptable) choices and iterates with the user on refining the set of parameters. The user 



GFD-I.060  January 10, 2006 

gesa-wg@ggf.org  9 

eventually settles on a resource. The broker is paid a “commission fee” (representing for 
example a percentage of what the user pays to the resource provider) paid by either the buyer or 
a seller, or a flat service fee. 
 
Other brokers include information broker, application service provider broker etc. 
 
2.4.3 Example Usage 
 
Not provided. 
 
2.4.4 Commercial Perspective 
 
The seller is primarily a reseller, as it functions as a “middleman” selling services provided by 
others. In that sense, the seller sells mainly information. In some cases, the seller may resell retail 
resources acquired by “wholesale” sale. Also, the reseller may specialize in “combination sales”, 
that is acquire separately multiple resources (disk, network, CPU reservations) and sell them as a 
“bundle”.  
 
The buyer is buying information, convenience, “complex products” (a combination of resources 
required for a particular task). Also, the buyer may be buying a warranty for the specific resource 
combinations. 
 
The charges may be as a flat fee or as a percentage of transaction with the original seller. 
 
2.4.5 Consumed Resources 
 
The resources involve mainly maintaining databases of relevant information, may also involve 
co-scheduling (or co-reserving) access to multiple resources at once. 
 
2.4.6 Architectural Requirements 
 
The requirement is the capability to accurately describe resources, accurately describe 
requirements for resources and to provide capabilities such as reservations in terms of service 
level agreements (SLAs).  
 
 
2.5 Computational Reseller Use Case 
 
This use case was contributed by Jon MacLaren and William Lee. 
 
2.5.1 Summary 
 
It is not always desirable for computational resource provider to interface with consumers 
directly.  A supply chain between the providers and consumers allow resource provider to 
concentrate on their core competence in maintaining large compute resources and avoid 



GFD-I.060  January 10, 2006 

gesa-wg@ggf.org  10 

providing costly interaction and care to a large number of consumers.  End users can purchase 
resources bundled into attractive packages, possibly coming from more than one upstream 
provider.  The resellers can make money from reselling aggregated computational resources 
without having to own any resource themselves, thereby minimising their own risk as well as 
their consumers by sourcing multiple providers. It allows them to focus in providing good 
customer care as well as optimising resource bundles for their target market. 
  
2.5.2 Scenario(s) 
 
A computational provider, preferring not to deal direct with customers, sells time on their 
computational resource to a reseller.  The reseller markets the resource to downstream 
consumers, bundling the resource with other resources, sourcing multiple upstream providers.  
Consumer purchases the resources in a monthly package which includes items such as CPU 
cycles, secure disk storage, database and software licences. The reseller maintains the agreed 
bundle by sustaining their relationships with upstream providers, or possibly switch provider 
without affecting the agreed service level with the end users.    
 
2.5.3 Example Usage 
 
Consider the example of a reseller who has strong relationship with the chemical industry and 
the expertise to deal with chemistry applications running on supercomputers.  Their upstream 
providers are supercomputer centres.  Their downstream consumers are chemists who want to 
use these applications.  It is useful to consider this example in three perspectives. 
 

1. The upstream resource provider.  The supercomputing centre wishes to sell its 
cycles to a reseller because either: 

 
a) During a period of low usage, to sell large amounts of redundant cycles (or buy 

work); or 
 
b) During normal usage, the resource owner never needs to deal directly with large 

number of small customer group  (costly to maintain high quality of customer 
care. Its own advantage!).  Further, this policy enables them to manage their 
resources in a small number of large transactions. 

 
c) For future period that expects high / low demand, sell a small / large portion of 

the cycles in advance to maintain a steady usage at a reasonable price.  
 

2. The reseller themselves.  The reseller bundles the resources available to it from the 
upstream providers, plus some licences it can obtain from the software vendors at a 
reduced rate (as it only deals with academics and in large quantity).  An example 
offer is that for a reasonable monthly fee, the chemist gets 200 “free” CPU-hours on a 
Cray T3E, plus thirty uses of Guassian98 thrown in (exceed that, and he gets charged 
quite a lot, of course.)  They also include some compensation deal when jobs are not 
delivered due to downtime (a kind of insurance). Reseller who has insights in market 



GFD-I.060  January 10, 2006 

gesa-wg@ggf.org  11 

trend can predict future demand and source resource provision from upstream 
vendors in advance when price is attractive. 

 
3. The downstream resource consumer.   The chemist wants to get resources from the 

reseller because getting bundled resources reduces transaction costs in dealing with 
all parties manually.  Also, he would expect to have better customer care and risks are 
shared with the reseller if upstream vendors default. Finally, the academic might be 
able to get his bundle for less because he gets it from the same reseller he gets his 
electricity / mobile phone time from. It encourages companies with existing micro-
transaction technology (such as telecom, utility, etc.) to participate as resellers.  

 
2.5.4 Commercial Perspective 
 
The computational provider is selling resources to the reseller – see Computational Provider 
Scenario. 
 
The reseller is buying compute resources from an upstream computational provider. 
 
The reseller bundles sources from multiple suppliers, and may bundle the computational resource 
with other resources such as licences and offline disk storage, which they then sell to 
downstream consumers. 
 
The downstream consumers then buy these attractive bundles. 
 
2.5.5 Consumed Resources 
 
Ultimately, it is the resources bought from the providers that are being consumed by the end 
users.  However, the charging is more complex due to the presence of one or more resellers in 
the supply chain. 
 
2.5.6 Architectural Requirements 
 
Reselling must be permitted (but only if desired).  The resource provider must be able to retain 
some amount of control over who the end-users are (and resellers further down the chain).  This 
means that some form of policy is required and contracts whereby their resources can be 
reclaimed if the reseller violates this policy. 
 
Different granularities of trading must be supported.  This also implies the ability to use different 
payment options, such as purchase order/invoicing or Credit Card, etc. 
 
There must be some support for aggregating resources (from OGSA, I suppose), and therefore 
somehow aggregating all the policies of upstream providers (our responsibility, I think). 
 
 



GFD-I.060  January 10, 2006 

gesa-wg@ggf.org  12 

3 Security Considerations 
 

This document is informational, and contains a set of use cases.  As such, it does not address 
security considerations directly.  Security (or the use of credentials) is briefly mentioned in two 
of the Use Cases (see Sections 2.1.2 and 2.2.4). 
 
Clearly, in any system where money is changing hands, security is important.  Any system 
implementing these use cases would need to consider carefully how to ensure user’s against 
undue financial risk.  Perhaps the Computational Reseller case presents the most complex 
requirements. 
 

4 Author Information 
 

Jon MacLaren 
302 Johnston Hall 
Louisiana State University 
Baton Rouge, LA 70803 
United States of America 
 
 
maclaren@cct.lsu.edu 

Steven Newhouse 
Open Middleware Infrastructure Institute (OMII) 
Suite 6005, Faraday Building (B21) 
University of Southampton 
Southampton, SO17 1BJ 
United Kingdom 
 
s.newhouse@omii.ac.uk 

 
 
Tomasz Haupt 
Mississippi State University 
200 Research Blvd.,  
Starkville, MS 39759 
United States of America 
 
 
haupt@cavs.msstate.edu 

 
 
Kate Keahey 
Argonne National Laboratory 
Building 221 
9700 South Cass Avenue 
Argonne, IL 60439 
United States of America 
 
keahey@mcs.anl.gov 

 
 
William Lee 
London e-Science Centre 
Department of Computing 
Imperial College London 
London, SW7 2AZ 
United Kingdom 
 
wwhl@doc.ic.ac.uk 

 
Please contact Jon MacLaren if you have any comments regarding this document. 
 
 
5 Intellectual Property Statement 

 
The GGF takes no position regarding the validity or scope of any intellectual property or other 
rights that might be claimed to pertain to the implementation or use of the technology described 
in this document or the extent to which any license under such rights might or might not be 
available; neither does it represent that it has made any effort to identify any such rights. Copies 
of claims of rights made available for publication and any assurances of licenses to be made 
available, or the result of an attempt made to obtain a general license or permission for the use of 
such proprietary rights by implementers or users of this specification can be obtained from the 
GGF Secretariat. 



GFD-I.060  January 10, 2006 

gesa-wg@ggf.org  13 

 
The GGF invites any interested party to bring to its attention any copyrights, patents or patent 
applications, or other proprietary rights which may cover technology that may be required to 
practice this recommendation. Please address the information to the GGF Executive Director. 
 

 
6 Full Copyright Notice 
 
Copyright (C) Global Grid Forum (2006). All Rights Reserved. 
 
This document and translations of it may be copied and furnished to others, and derivative works 
that comment on or otherwise explain it or assist in its implementation may be prepared, copied, 
published and distributed, in whole or in part, without restriction of any kind, provided that the 
above copyright notice and this paragraph are included on all such copies and derivative works. 
However, this document itself may not be modified in any way, such as by removing the 
copyright notice or references to the GGF or other organizations, except as needed for the 
purpose of developing Grid Recommendations in which case the procedures for copyrights 
defined in the GGF Document process must be followed, or as required to translate it into 
languages other than English. 
 
The limited permissions granted above are perpetual and will not be revoked by the GGF or its 
successors or assigns. 
 
This document and the information contained herein is provided on an "AS IS" basis and THE 
GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE 
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED 
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE." 
 


